24 research outputs found

    Mere undervisning, større studieintensitet? En multilevelanalyse af 7.917 studerendes tidsforbrug

    Get PDF
    Der har de seneste år været betydelig interesse for danske universitetsstuderendes studieintensitet, og der er blevet givet forskellige anbefalinger i forhold til, hvordan de studerende kan motiveres til at studere mere. Det empiriske grundlag for sådanne anbefalinger er imidlertid sparsomt. Formålet med dette studie er dels at beskrive den gennemsnitlige studieaktivitet blandt studerende på Aarhus Universitet, dels at analysere det indbyrdes forhold mellem undervisning og forberedelse. En multilevelanalyse af 7.917 studerendes selvrapporterede tidsforbrug viser overraskende en negativ sammenhæng mellem antallet af timer brugt på undervisning og antallet af timer brugt på forberedelse. Yderligere analyser tyder på, at sammenhængen mellem undervisningstid og forberedelsestid varierer på tværs af uddannelser. In recent years, the study habits of Danish university students have been a cause for concern, and various initiatives to improve motivation and encourage students to study harder have been introduced. However, the empirical support for such initiatives is limited. This article aims to describe the average student’s study habits and analyse the interrelationship between teaching and independent study time. A multilevel analysis of 7,917 students self-reported time budgets surprisingly reveals negative correlation between hours spent studying and hours spent participating in classes. Further analyses suggest that this correlation varies across study programmes.

    Farm dust resistomes and bacterial microbiomes in European poultry and pig farms

    Get PDF
    Background: Livestock farms are a reservoir of antimicrobial resistant bacteria from feces. Airborne dust-bound bacteria can spread across the barn and to the outdoor environment. Therefore, exposure to farm dust may be of concern for animals, farmers and neighboring residents. Although dust is a potential route of transmission, little is known about the resistome and bacterial microbiome of farm dust. Objectives: We describe the resistome and bacterial microbiome of pig and poultry farm dust and their relation with animal feces resistomes and bacterial microbiomes, and on-farm antimicrobial usage (AMU). In addition, the relation between dust and farmers' stool resistomes was explored. Methods: In the EFFORT-study, resistomes and bacterial microbiomes of indoor farm dust collected on Electrostatic Dust fall Collectors (EDCs), and animal feces of 35 conventional broiler and 44 farrow-to-finish pig farms from nine European countries were determined by shotgun metagenomic analysis. The analysis also included 79 stool samples from farmers working or living at 12 broiler and 19 pig farms and 46 human controls. Relative abundance of and variation in resistome and bacterial composition of farm dust was described and compared to animal feces and farmers' stool. Results: The farm dust resistome contained a large variety of antimicrobial resistance genes (ARGs); more than the animal fecal resistome. For both poultry and pigs, composition of dust resistomes finds (partly) its origin in animal feces as dust resistomes correlated significantly with fecal resistomes. The dust bacterial microbiome also correlated significantly with the dust resistome composition. A positive association between AMU in animals on the farm and the total abundance of the dust resistome was found. Occupational exposure to pig farm dust or animal feces may contribute to farmers' resistomes, however no major shifts in farmers resistome towards feces or dust resistomes were found in this study. Conclusion: Poultry and pig farm dust resistomes are rich and abundant and associated with the fecal resistome of the animals and the dust bacterial microbiome

    Metagenomics-Based Approach to Source-Attribution of Antimicrobial Resistance Determinants - Identification of Reservoir Resistome Signatures

    Get PDF
    Metagenomics can unveil the genetic content of the total microbiota in different environments, such as food products and the guts of humans and livestock. It is therefore considered of great potential to investigate the transmission of foodborne hazards as part of source-attribution studies. Source-attribution of antimicrobial resistance (AMR) has traditionally relied on pathogen isolation, while metagenomics allows investigating the full span of AMR determinants. In this study, we hypothesized that the relative abundance of fecal resistome components can be associated with specific reservoirs, and that resistomes can be used for AMR source-attribution. We used shotgun-sequences from fecal samples of pigs, broilers, turkeys- and veal calves collected across Europe, and fecal samples from humans occupationally exposed to livestock in one country (pig slaughterhouse workers, pig and broiler farmers). We applied both hierarchical and flat forms of the supervised classification ensemble algorithm Random Forests to classify resistomes into corresponding reservoir classes. We identified country-specific and -independent AMR determinants, and assessed the impact of country-specific determinants when attributing AMR resistance in humans. Additionally, we performed a similarity percentage analysis with the full spectrum of AMR determinants to identify resistome signatures for the different reservoirs. We showed that the number of AMR determinants necessary to attribute a resistome into the correct reservoir increases with a larger reservoir heterogeneity, and that the impact of country-specific resistome signatures on prediction varies between countries. We predicted a higher occupational exposure to AMR determinants among workers exposed to pigs than among those exposed to broilers. Additionally, results suggested that AMR exposure on pig farms was higher than in pig slaughterhouses. Human resistomes were more similar to pig and veal calves’ resistomes than to those of broilers and turkeys, and the majority of these resistome dissimilarities can be explained by a small set of AMR determinants. We identified resistome signatures for each individual reservoir, which include AMR determinants significantly associated with on-farm antimicrobial use. We attributed human resistomes to different livestock reservoirs using Random Forests, which allowed identifying pigs as a potential source of AMR in humans. This study thus demonstrates that it is possible to apply metagenomics in AMR source-attribution

    Metagenomics-Based Approach to Source-Attribution of Antimicrobial Resistance Determinants - Identification of Reservoir Resistome Signatures

    Get PDF
    Metagenomics can unveil the genetic content of the total microbiota in different environments, such as food products and the guts of humans and livestock. It is therefore considered of great potential to investigate the transmission of foodborne hazards as part of source-attribution studies. Source-attribution of antimicrobial resistance (AMR) has traditionally relied on pathogen isolation, while metagenomics allows investigating the full span of AMR determinants. In this study, we hypothesized that the relative abundance of fecal resistome components can be associated with specific reservoirs, and that resistomes can be used for AMR source-attribution. We used shotgun-sequences from fecal samples of pigs, broilers, turkeys- and veal calves collected across Europe, and fecal samples from humans occupationally exposed to livestock in one country (pig slaughterhouse workers, pig and broiler farmers). We applied both hierarchical and flat forms of the supervised classification ensemble algorithm Random Forests to classify resistomes into corresponding reservoir classes. We identified country-specific and -independent AMR determinants, and assessed the impact of country-specific determinants when attributing AMR resistance in humans. Additionally, we performed a similarity percentage analysis with the full spectrum of AMR determinants to identify resistome signatures for the different reservoirs. We showed that the number of AMR determinants necessary to attribute a resistome into the correct reservoir increases with a larger reservoir heterogeneity, and that the impact of country-specific resistome signatures on prediction varies between countries. We predicted a higher occupational exposure to AMR determinants among workers exposed to pigs than among those exposed to broilers. Additionally, results suggested that AMR exposure on pig farms was higher than in pig slaughterhouses. Human resistomes were more similar to pig and veal calves' resistomes than to those of broilers and turkeys, and the majority of these resistome dissimilarities can be explained by a small set of AMR determinants. We identified resistome signatures for each individual reservoir, which include AMR determinants significantly associated with on-farm antimicrobial use. We attributed human resistomes to different livestock reservoirs using Random Forests, which allowed identifying pigs as a potential source of AMR in humans. This study thus demonstrates that it is possible to apply metagenomics in AMR source-attribution

    Semantic text mining in early drug discovery for type 2 diabetes

    No full text
    BackgroundSurveying the scientific literature is an important part of early drug discovery; and with the ever-increasing amount of biomedical publications it is imperative to focus on the most interesting articles. Here we present a project that highlights new understanding (e.g. recently discovered modes of action) and identifies potential drug targets, via a novel, data-driven text mining approach to score type 2 diabetes (T2D) relevance. We focused on monitoring trends and jumps in T2D relevance to help us be timely informed of important breakthroughs.MethodsWe extracted over 7 million n-grams from PubMed abstracts and then clustered around 240,000 linked to T2D into almost 50,000 T2D relevant 'semantic concepts'. To score papers, we weighted the concepts based on co-mentioning with core T2D proteins. A protein's T2D relevance was determined by combining the scores of the papers mentioning it in the five preceding years. Each week all proteins were ranked according to their T2D relevance. Furthermore, the historical distribution of changes in rank from one week to the next was used to calculate the significance of a change in rank by T2D relevance for each protein.ResultsWe show that T2D relevant papers, even those not mentioning T2D explicitly, were prioritised by relevant semantic concepts. Well known T2D proteins were therefore enriched among the top scoring proteins. Our 'high jumpers' identified important past developments in the apprehension of how certain key proteins relate to T2D, indicating that our method will make us aware of future breakthroughs. In summary, this project facilitated keeping up with current T2D research by repeatedly providing short lists of potential novel targets into our early drug discovery pipeline

    Farm dust resistomes and bacterial microbiomes in European poultry and pig farms

    Get PDF
    BACKGROUND: Livestock farms are a reservoir of antimicrobial resistant bacteria from feces. Airborne dust-bound bacteria can spread across the barn and to the outdoor environment. Therefore, exposure to farm dust may be of concern for animals, farmers and neighboring residents. Although dust is a potential route of transmission, little is known about the resistome and bacterial microbiome of farm dust. OBJECTIVES: We describe the resistome and bacterial microbiome of pig and poultry farm dust and their relation with animal feces resistomes and bacterial microbiomes, and on-farm antimicrobial usage (AMU). In addition, the relation between dust and farmers' stool resistomes was explored. METHODS: In the EFFORT-study, resistomes and bacterial microbiomes of indoor farm dust collected on Electrostatic Dust fall Collectors (EDCs), and animal feces of 35 conventional broiler and 44 farrow-to-finish pig farms from nine European countries were determined by shotgun metagenomic analysis. The analysis also included 79 stool samples from farmers working or living at 12 broiler and 19 pig farms and 46 human controls. Relative abundance of and variation in resistome and bacterial composition of farm dust was described and compared to animal feces and farmers' stool. RESULTS: The farm dust resistome contained a large variety of antimicrobial resistance genes (ARGs); more than the animal fecal resistome. For both poultry and pigs, composition of dust resistomes finds (partly) its origin in animal feces as dust resistomes correlated significantly with fecal resistomes. The dust bacterial microbiome also correlated significantly with the dust resistome composition. A positive association between AMU in animals on the farm and the total abundance of the dust resistome was found. Occupational exposure to pig farm dust or animal feces may contribute to farmers' resistomes, however no major shifts in farmers resistome towards feces or dust resistomes were found in this study. CONCLUSION: Poultry and pig farm dust resistomes are rich and abundant and associated with the fecal resistome of the animals and the dust bacterial microbiome
    corecore