1,912 research outputs found
An anisotropic hybrid non-perturbative formulation for 4D N = 2 supersymmetric Yang-Mills theories
We provide a simple non-perturbative formulation for non-commutative
four-dimensional N = 2 supersymmetric Yang-Mills theories. The formulation is
constructed by a combination of deconstruction (orbifold projection), momentum
cut-off and matrix model techniques. We also propose a moduli fixing term that
preserves lattice supersymmetry on the deconstruction formulation. Although the
analogous formulation for four-dimensional N = 2 supersymmetric Yang-Mills
theories is proposed also in Nucl.Phys.B857(2012), our action is simpler and
better suited for computer simulations. Moreover, not only for the
non-commutative theories, our formulation has a potential to be a
non-perturbative tool also for the commutative four-dimensional N = 2
supersymmetric Yang-Mills theories.Comment: 32 pages, final version accepted in JHE
Absence of sign problem in two-dimensional N=(2,2) super Yang-Mills on lattice
We show that N=(2,2) SU(N) super Yang-Mills theory on lattice does not have
sign problem in the continuum limit, that is, under the phase-quenched
simulation phase of the determinant localizes to 1 and hence the phase-quench
approximation becomes exact. Among several formulations, we study models by
Cohen-Kaplan-Katz-Unsal (CKKU) and by Sugino. We confirm that the sign problem
is absent in both models and that they converge to the identical continuum
limit without fine tuning. We provide a simple explanation why previous works
by other authors, which claim an existence of the sign problem, do not capture
the continuum physics.Comment: 27 pages, 24 figures; v2: comments and references added; v3: figures
on U(1) mass independence and references added, to appear in JHE
Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant
We show that the ABJM theory, which is an N=6 superconformal U(N)*U(N)
Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling
constant by applying a simple Monte Carlo method to the matrix model that can
be derived from the theory by using the localization technique. This opens up
the possibility of probing the quantum aspects of M-theory and testing the
AdS_4/CFT_3 duality at the quantum level. Here we calculate the free energy,
and confirm the N^{3/2} scaling in the M-theory limit predicted from the
gravity side. We also find that our results nicely interpolate the analytical
formulae proposed previously in the M-theory and type IIA regimes. Furthermore,
we show that some results obtained by the Fermi gas approach can be clearly
understood from the constant map contribution obtained by the genus expansion.
The method can be easily generalized to the calculations of BPS operators and
to other theories that reduce to matrix models.Comment: 35 pages, 20 figures; reference added. The simulation code is
available upon request to [email protected]
Nonperturbative studies of supersymmetric matrix quantum mechanics with 4 and 8 supercharges at finite temperature
We investigate thermodynamic properties of one-dimensional U(N)
supersymmetric gauge theories with 4 and 8 supercharges in the planar large-N
limit by Monte Carlo calculations. Unlike the 16 supercharge case, the
threshold bound state with zero energy is widely believed not to exist in these
models. This led A.V. Smilga to conjecture that the internal energy decreases
exponentially at low temperature instead of decreasing with a power law. In the
16 supercharge case, the latter behavior was predicted from the dual black
0-brane geometry and confirmed recently by Monte Carlo calculations. Our
results for the models with 4 and 8 supercharges indeed support the exponential
behavior, revealing a qualitative difference from the 16 supercharge case.Comment: 16 pages, 7 figures, LaTeX2e, minor corrections in section 3, final
version accepted in JHE
Lattice formulation of two-dimensional N=(2,2) super Yang-Mills with SU(N) gauge group
We propose a lattice model for two-dimensional SU(N) N=(2,2) super Yang-Mills
model. We start from the CKKU model for this system, which is valid only for
U(N) gauge group. We give a reduction of U(1) part keeping a part of
supersymmetry. In order to suppress artifact vacua, we use an admissibility
condition.Comment: 16 pages, 3 figures; v2: typo crrected; v3: 18 pages, a version to
appear in JHE
Thermal phases of D1-branes on a circle from lattice super Yang-Mills
We report on the results of numerical simulations of 1+1 dimensional SU(N)
Yang-Mills theory with maximal supersymmetry at finite temperature and
compactified on a circle. For large N this system is thought to provide a dual
description of the decoupling limit of N coincident D1-branes on a circle. It
has been proposed that at large N there is a phase transition at strong
coupling related to the Gregory-Laflamme (GL) phase transition in the
holographic gravity dual. In a high temperature limit there was argued to be a
deconfinement transition associated to the spatial Polyakov loop, and it has
been proposed that this is the continuation of the strong coupling GL
transition. Investigating the theory on the lattice for SU(3) and SU(4) and
studying the time and space Polyakov loops we find evidence supporting this. In
particular at strong coupling we see the transition has the parametric
dependence on coupling predicted by gravity. We estimate the GL phase
transition temperature from the lattice data which, interestingly, is not yet
known directly in the gravity dual. Fine tuning in the lattice theory is
avoided by the use of a lattice action with exact supersymmetry.Comment: 21 pages, 8 figures. v2: References added, two figures were modified
for clarity. v3: Normalisation of lattice coupling corrected by factor of two
resulting in change of estimate for c_cri
Classical and Quantum Cosmology of Multigravity
Recently, a multigraviton theory on a simple closed circuit graph
corresponding to the discretization of compactification of the
Kaluza-Klein (KK) theory has been considered. In the present paper, we extend
this theory to that on a general graph and study what modes of particles are
included. Furthermore, we generalize it in a possible nonlinear theory based on
the vierbein formalism and study classical and quantum cosmological solutions
in the theory. We found that scale factors in a solution for this theory repeat
acceleration and deceleration.Comment: 17 pages, 15 figures, RevTeX4.1, revised versio
On the shape of a D-brane bound state and its topology change
As is well known, coordinates of D-branes are described by NxN matrices. From
generic non-commuting matrices, it is difficult to extract physics, for
example, the shape of the distribution of positions of D-branes. To overcome
this problem, we generalize and elaborate on a simple prescription, first
introduced by Hotta, Nishimura and Tsuchiya, which determines the most
appropriate gauge to make the separation between diagonal components (D-brane
positions) and off-diagonal components. This prescription makes it possible to
extract the distribution of D-branes directly from matrices. We verify the
power of it by applying it to Monte-Carlo simulations for various lower
dimensional Yang-Mills matrix models. In particular, we detect the topology
change of the D-brane bound state for a phase transition of a matrix model; the
existence of this phase transition is expected from the gauge/gravity duality,
and the pattern of the topology change is strikingly similar to the counterpart
in the gravity side, the black hole/black string transition. We also propose a
criterion, based on the behavior of the off-diagonal components, which
determines when our prescription gives a sensible definition of D-brane
positions. We provide numerical evidence that our criterion is satisfied for
the typical distance between D-branes. For a supersymmetric model, positions of
D-branes can be defined even at a shorter distance scale. The behavior of
off-diagonal elements found in this analysis gives some support for previous
studies of D-brane bound states.Comment: 29 pages, 16 figure
Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature
We present the first Monte Carlo results for supersymmetric matrix quantum
mechanics with sixteen supercharges at finite temperature. The recently
proposed non-lattice simulation enables us to include the effects of fermionic
matrices in a transparent and reliable manner. The internal energy nicely
interpolates the weak coupling behavior obtained by the high temperature
expansion, and the strong coupling behavior predicted from the dual black hole
geometry. The Polyakov line takes large values even at low temperature
suggesting the absence of a phase transition in sharp contrast to the bosonic
case. These results provide highly non-trivial evidences for the gauge/gravity
duality.Comment: REVTeX4, 4 pages, 3 figure
- …