386 research outputs found

    Seismic Analysis of the Reservoir-Earth Dam-Pore Fluid System Using an Integrated Numerical Approach

    Get PDF
    In this paper, an integrated numerical approach is proposed for analyzing the seismic response of the reservoir-earth dam-pore fluid system subjected to earthquake loading. The fluid-mechanical coupling approach is deployed to capture the fluid-solid matrix coupling effects automatically. A hysteretic damping constitutive law is adopted to follow the modulus reduction and damping ratio curves. The Finn-Byrne equation is used to represent the shear-induced volumetric strain behavior of liquefiable materials. The interaction between the reservoir water and the dam boundary is treated as a dynamically updated pressure boundary condition. The deconvolution is accomplished by the equivalent linear program SHAKE. An automatic remeshing algorithm is employed to replace the badly distorted mesh with a new regular mesh whenever needed during the system evolution process. The system integrating these elements is constructed in the explicit finite-difference program FLAC, and applied to analyze the responses of a reservoir dam under seismic loading in both horizontal and vertical directions; the potential liquefied regions, earthquake-induced settlement and lateral spreading predicted by the simulation are presented

    A review of development of micro-channel heat exchanger applied in air-conditioning system

    Get PDF
    AbstractMicro-channel heat exchanger(MCHX) has been increasingly applied in HVAC&R(Heating, Ventilation, and Air Conditioning & Refrigeration) field due to its higher efficiently heat transfer rate, more compact structure, lower cost. The characteristics of micro-channel heat transfer and fluid dynamics are summarized in this paper. The methods about optimizations (ie, geometry and thermodynamic performance) and the advantages and disadvantages of the MCHX are analyzed

    A Class of Lie 2-Algebras in Higher-Order Courant Algebroids

    Get PDF
    Abstract In this paper, we study the relation of the algebraic properties of the higher-order Courant bracket and Dorfman bracket on the direct sum bundle for an m-dimensional smooth manifold M, and a Lie 2-algebra which is a "categorified" version of a Lie algebra. We prove that the higher-order Courant algebroids give rise to a semistrict Lie 2-algebra, and we prove that the higher-order Dorfman algebroids give rise to a hemistrict Lie 2-algebra. Consequently, there is an isomorphism from the higher-order Courant algebroids to the higher-order Dorfman algebroids as Lie 2-algebras homomorphism

    Inhibitory Effects of Peptide Lunasin in Colorectal Cancer HCT-116 Cells and Their Tumorsphere-Derived Subpopulation

    Get PDF
    The involvement of cancer stem-like cells (CSC) in the tumor pathogenesis has profound implications for cancer therapy and chemoprevention. Lunasin is a bioactive peptide from soybean and other vegetal sources with proven protective activities against cancer and other chronic diseases. The present study focused on the cytotoxic effect of peptide lunasin in colorectal cancer HCT-116 cells, both the bulk tumor and the CSC subpopulations. Lunasin inhibited the proliferation and the tumorsphere-forming capacity of HCT-116 cells. Flow cytometry results demonstrated that the inhibitory effects were related to apoptosis induction and cell cycle-arrest at G1 phase. Moreover, lunasin caused an increase in the sub-GO/G1 phase of bulk tumor cells, linked to the apoptotic events found. Immunoblotting analysis further showed that lunasin induced apoptosis through activation of caspase-3 and cleavage of PARP, and could modulate cell cycle progress through the cyclin-dependent kinase inhibitor p21. Together, these results provide new evidence on the chemopreventive activity of peptide lunasin on colorectal cancer by modulating both the parental and the tumorsphere-derived subsets of HCT-116 cells

    Conceptual Study of a Real-Time Hybrid Simulation Framework for Monopile Offshore Wind Turbines Under Wind and Wave Loads

    Get PDF
    As an attractive renewable energy source, offshore wind plants are becoming increasingly popular for energy production. However, the performance assessment of offshore wind turbine (OWT) structure is a challenging task due to the combined wind-wave loading and difficulties in reproducing such loading conditions in laboratory. Real-time hybrid simulation (RTHS), combining physical testing and numerical simulation in real-time, offers a new venue to study the structural behavior of OWTs. It overcomes the scaling incompatibilities in OWT scaled model testing by replacing the rotor components with an actuation system, driven by an aerodynamic simulation tool running in real-time. In this study, a RTHS framework for monopile OWTs is proposed. A set of sensitivity analyses is carried out to evaluate the feasibility of this RTHS framework and determine possible tolerances on its design. By simulating different scaling laws and possible error contributors (delays and noises) in the proposed framework, the sensitivity of the OWT responses to these parameters are quantified. An example using a National Renewable Energy Lab (NREL) 5-MW reference OWT system at 1:25 scale is simulated in this study to demonstrate the proposed RTHS framework and sensitivity analyses. Three different scaling laws are considered. The sensitivity results show that the delays in the RTHS framework significantly impact the performance on the response evaluation, higher than the impact of noises. The proposed framework and sensitivity analyses presented in this study provides important information for future implementation and further development of the RTHS technology for similar marine structures

    MLA-BIN: Model-level Attention and Batch-instance Style Normalization for Domain Generalization of Federated Learning on Medical Image Segmentation

    Full text link
    The privacy protection mechanism of federated learning (FL) offers an effective solution for cross-center medical collaboration and data sharing. In multi-site medical image segmentation, each medical site serves as a client of FL, and its data naturally forms a domain. FL supplies the possibility to improve the performance of seen domains model. However, there is a problem of domain generalization (DG) in the actual de-ployment, that is, the performance of the model trained by FL in unseen domains will decrease. Hence, MLA-BIN is proposed to solve the DG of FL in this study. Specifically, the model-level attention module (MLA) and batch-instance style normalization (BIN) block were designed. The MLA represents the unseen domain as a linear combination of seen domain models. The atten-tion mechanism is introduced for the weighting coefficient to obtain the optimal coefficient ac-cording to the similarity of inter-domain data features. MLA enables the global model to gen-eralize to unseen domain. In the BIN block, batch normalization (BN) and instance normalization (IN) are combined to perform the shallow layers of the segmentation network for style normali-zation, solving the influence of inter-domain image style differences on DG. The extensive experimental results of two medical image seg-mentation tasks demonstrate that the proposed MLA-BIN outperforms state-of-the-art methods.Comment: 9 pages, 8 figures, 2 table

    Aberrant Brain Regional Homogeneity and Functional Connectivity of Entorhinal Cortex in Vascular Mild Cognitive Impairment: A Resting-State Functional MRI Study

    Get PDF
    The aim of this study was to investigate changes in regional homogeneity (ReHo) and the functional connectivity of the entorhinal cortex (EC) in vascular mild cognitive impairment (VaMCI) and to evaluate the relationships between such changes and neuropsychological measures in VaMCI individuals. In all, 31 patients with VaMCI and 32 normal controls (NCs) underwent rs-fMRI. Differences in whole-brain ReHo and seed-based bilateral EC functional connectivity (EC-FC) were determined. Pearson's correlation was used to evaluate the relationships between regions with significant group differences and different neuropsychological measures. Vascular mild cognitive impairment (VaMCI) patients had lower scores in Mini-mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) and higher ones in Activity of Daily Living (ADL) (p < 0.05). Vascular mild cognitive impairment (VaMCI) individuals had significantly lower ReHo in the left cerebellum and right lentiform nucleus than NCs (P < 0.05, TFCE FWE correction). Vascular mild cognitive impairment (VaMCI) subjects showed significant decreases in the FC of the right EC in the right inferior frontal gyrus, right middle frontal gyrus, bilateral pre-central gyrus, and right post-central/superior parietal lobules (P < 0.05, TFCE FWE correction). Significant positive correlations were found between ReHo and MoCA scores for the right lentiform nucleus (r = 0.37, P < 0.05). The right post-central/superior parietal lobules showed a significant positive correlation between right EC-FC and MoCA scores (r = 0.37, P < 0.05). Patterns in ReHo and EC-FC changes in VaMCI patients and their correlations with neuropsychological measures may be a pathophysiological foundation of cognitive impairment, which may aid the early diagnosis of VaMCI

    Ultra low RIN, low threshold AlGaInAs/InP BH-DFB laser

    Get PDF
    This study presents a comparative analysis of AlGalnAs buried heterostructure laser diodes by using dual-channel ridge-waveguides. Different shaped channels, including bowl shaped groove and vertical groove, are explored. Using a vertical groove structure, we achieved an output power of 90 mW at 25 °C with a threshold current of only 4 mA. This represents a 3.6-fold increase in output power compared to the BH-DFB structure. At a high temperature of 85 °C, the laser maintains a side-mode suppression ratio of over 45 dB at the maximum power point. The laser’s relative intensity noise in the 0–40 GHz frequency range is less than −162.8 dB/Hz when operated at 300 mA with the chip butterfly packaged. These findings underscore the robustness, reliability, and high-performance capabilities of the developed DFB laser, highlighting its potential for various practical applications

    The flavor-changing single-top quark production in the littlest Higgs model with T parity at the LHC

    Get PDF
    The littlest Higgs model with discrete symmetry named "T-parity"(LHT) is an interesting new physics model which does not suffer strong constraints from electroweak precision data. One of the important features of the LHT model is the existence of new source of FC interactions between the SM fermions and the mirror fermions. These FC interactions can make significant loop-level contributions to the couplings tcVtcV, and furthermore enhance the cross sections of the FC single-top quark production processes. In this paper, we study some FC single-top quark production processes, pp→tcˉpp\to t\bar{c} and pp→tVpp\to tV, at the LHC in the LHT model. We find that the cross sections of these processes are strongly depended on the mirror quark masses. The processes pp→tcˉpp\to t\bar{c} and pp→tgpp\to tg have large cross sections with heavy mirror quarks. The observation of these FC processes at the LHC is certainly the clue of new physics, and further precise measurements of the cross scetions can provide useful information about the free parameters in the LHT model, specially about the mirror quark masses.Comment: 20 pages, 5 figure
    • …
    corecore