28,060 research outputs found
Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System
Using the Moon to occult the Sun, the Clementine spacecraft used its
navigation cameras to map the inner zodiacal light at optical wavelengths over
elongations of 3-30 degrees from the Sun. This surface brightness map is then
used to infer the spatial distribution of interplanetary dust over heliocentric
distances of about 10 solar radii to the orbit of Venus. We also apply a simple
model that attributes the zodiacal light as being due to three dust populations
having distinct inclination distributions, namely, dust from asteroids and
Jupiter-family comets (JFCs), dust from Halley-type comets, and an isotropic
cloud of dust from Oort Cloud comets. The best-fitting scenario indicates that
asteroids + JFCs are the source of about 45% of the optical dust cross-section
seen in the ecliptic at 1 AU, but that at least 89% of the dust cross-section
enclosed by a 1 AU radius sphere is of a cometary origin. When these results
are extrapolated out to the asteroid belt, we find an upper limit on the mass
of the light-reflecting asteroidal dust that is equivalent to a 12 km asteroid,
and a similar extrapolation of the isotropic dust cloud out to Oort Cloud
distances yields a mass equivalent to a 30 km comet, although the latter mass
is uncertain by orders of magnitude.Comment: To be published in Icaru
Coping with multiple enemies : pairwise interactions do not predict evolutionary change in complex multitrophic communities
Predicting the ecological and evolutionary trajectories of populations in multispecies communities is one of the fundamental challenges in ecology. Many of these predictions are made by scaling patterns observed from pairwise interactions. Here, we show that the coupling of ecological and evolutionary outcomes is likely to be weaker in increasingly complex communities due to greater chance of life-history trait correlations. Using model microbial communities comprising a focal bacterial species (Bacillus subtilis), a bacterial competitor, protist predator and phage parasite, we found that increasing the number of enemies in a community had an overall negative effect on B. subtilis population growth. However, only the competitor imposed direct selection for B. subtilis trait evolution in pairwise cultures and this effect was weakened in the presence of other antagonists that had a negative effect on the competitor. In contrast, adaptation to parasites was driven indirectly by correlated selection where competitors had a positive and predators a negative effect. For all measured traits, selection in pairwise communities was a poor predictor of B. subtilis evolution in more complex communities. Together, our results suggest that coupling of ecological and evolutionary outcomes is interaction-specific and weakly coupled in more complex communities. We conclude that understanding 2 the ecological and evolutionary mechanisms underpinning trait correlations is crucial to predict species response to global change in complex microbial communitie
Remote Entanglement between a Single Atom and a Bose-Einstein Condensate
Entanglement between stationary systems at remote locations is a key resource
for quantum networks. We report on the experimental generation of remote
entanglement between a single atom inside an optical cavity and a Bose-Einstein
condensate (BEC). To produce this, a single photon is created in the
atom-cavity system, thereby generating atom-photon entanglement. The photon is
transported to the BEC and converted into a collective excitation in the BEC,
thus establishing matter-matter entanglement. After a variable delay, this
entanglement is converted into photon-photon entanglement. The matter-matter
entanglement lifetime of 100 s exceeds the photon duration by two orders
of magnitude. The total fidelity of all concatenated operations is 95%. This
hybrid system opens up promising perspectives in the field of quantum
information
Simian immunodeficiency virus infection in wild-caught chimpanzees from Cameroon
Simian immunodeficiency viruses (SIVcpz) infecting chimpanzees (Pan troglodytes) in west central Africa are the closest relatives to all major variants of human immunodeficiency virus type 1 ([HIV-1]; groups M, N and O), and have thus been implicated as the source of the human infections; however, information concerning the prevalence, geographic distribution, and subspecies association of SIVcpz still remains limited. In this study, we tested 71 wild-caught chimpanzees from Cameroon for evidence of SIVcpz infection. Thirty-nine of these were of the central subspecies (Pan troglodytes troglodytes), and 32 were of the Nigerian subspecies (Pan troglodytes vellerosus), as determined by mitochondrial DNA analysis. Serological analysis determined that one P. t. troglodytes ape (CAM13) harbored serum antibodies that cross-reacted strongly with HIV-1 antigens; all other apes were seronegative. To characterize the newly identified virus, 14 partially overlapping viral fragments were amplified from fecal virion RNA and concatenated to yield a complete SIVcpz genome (9,284 bp). Phylogenetic analyses revealed that SIVcpzCAM13 fell well within the radiation of the SIVcpzPtt group of viruses, as part of a clade including all other SIVcpzPtt strains as well as HIV-1 groups M and N. However, SIVcpzCAM13 clustered most closely with SIVcpzGAB1 from Gabon rather than with SIVcpzCAM3 and SIVcpzCAM5 from Cameroon, indicating the existence of divergent SIVcpzPtt lineages within the same geographic region. These data, together with evidence of recombination among ancestral SIVcpzPtt lineages, indicate long-standing endemic infection of central chimpanzees and reaffirm a west central African origin of HIV-1. Whether P. t. vellerosus apes are naturally infected with SIVcpz requires further study
Role of Oxygen Electrons in the Metal-Insulator Transition in the Magnetoresistive Oxide LaSrMnO Probed by Compton Scattering
We have studied the [100]-[110] anisotropy of the Compton profile in the
bilayer manganite. Quantitative agreement is found between theory and
experiment with respect to the anisotropy in the two metallic phases (i.e. the
low temperature ferromagnetic and the colossal magnetoresistant phase under a
magnetic field of 7 T). Robust signatures of the metal-insulator transition are
identified in the momentum density for the paramagnetic phase above the Curie
temperature. We interpret our results as providing direct evidence for the
transition from the metallic-like to the admixed ionic-covalent bonding
accompanying the magnetic transition. The number of electrons involved in this
phase transition is estimated from the area enclosed by the Compton profile
anisotropy differences. Our study demonstrates the sensitivity of the Compton
scattering technique for identifying the number and type of electrons involved
in the metal-insulator transition.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Recommended from our members
Intraperitoneal photodynamic therapy causes a capillary-leak syndrome.
BackgroundIn patients undergoing intraperitoneal (IP) photodynamic therapy (PDT), the combination of aggressive surgical debulking and light therapy causes an apparent systemic capillary-leak syndrome that necessitates significant intensive care unit (ICU) management after surgery.MethodsFrom May 1997 to May 2001, 65 patients underwent surgical debulking and PDT as part of an ongoing phase II trial for disseminated IP cancer. Perioperative data were reviewed retrospectively, and statistical analyses were performed to determine whether any identifiable factors were associated with the need for mechanical ventilation for longer than 1 day and with the occurrence of postoperative complications.ResultsForty-three women and 22 men (mean age, 49 years) were treated. Operative time averaged 9.8 hours, and mean estimated blood loss was 1450 mL. The mean crystalloid requirement for the first 48 hours after surgery was 29.3 L, and 49 patients required blood products. Twenty-four patients were intubated for longer than 24 hours, with a mean of 8.3 days for those intubated longer than 1 day. The median ICU stay was 4 days. Overall, 110 complications developed in 45 (69%) of the 65 patients. Significant complications included 6 patients with acute respiratory distress syndrome, 28 patients with infectious complications, and 4 patients with anastomotic complications. Statistical analyses revealed that surgery-related factors were significantly associated with these complication outcomes.ConclusionsPatients who undergo surgical debulking and IP PDT develop a significant capillary-leak syndrome after surgery that necessitates massive volume resuscitation, careful ICU monitoring, and, frequently, prolonged ventilatory support
- …