833 research outputs found

    The isolated neutron star X-ray pulsars RX J0420.0–5022 and RX J0806.4–4123 : new X-ray and optical observations

    Get PDF
    We report on the analysis of new X-ray data obtained with XMM-Newton and Chandra from two ROSAT-discovered X-ray dim isolated neutron stars (XDINs). RX J0806.4−4123 was observed with XMM-Newton in April 2003, 2.5 years after the first observation. The EPIC-pn data confirm that this object is an X-ray pulsar with 11.371 s neutron star spin period. The X-ray spectrum is consistent with absorbed black-body emission with a temperature kT = 96 eV and N H = 4 × 10 19 cm −2 without significant changes between the two observations. Four XMM-Newton observations of RX J0420.0−5022 between December 2002 and July 2003 did not confirm the 22.7 s pulsations originally indicated in ROSAT data, but clearly reveal a 3.453 s period. A fit to the X-ray spectrum using an absorbed black-body model yields kT = 45 eV, the lowest value found from the small group of XDINs and N H = 1.0 × 10 20 cm −2. Including a broad absorption line improves the quality of the spectral fits considerably for both objects and may indicate the presence of absorption features similar to those reported from RBS1223, RX J1605.3+3249 and RX J0720.4−3125. For both targets we derive accurate X-ray positions from the Chandra data and present an optical counterpart candidate for RX J0420.0−5022 with B = 26.6 ± 0.3 mag from VLT imaging

    Timing and spectral changes of the Be X-ray transient EXO 0531-6609.2 through high and low state

    Get PDF
    We report on spectral and timing analysis of BeppoSAX data of the 13.6 s period transient X-ray pulsar EXO 0531-6609.2. Observations were carried out in March 1997 and October 1998, catching the source during a high and a low emission state, respectively. Correspondingly, the X-ray luminosity is found at a level of 4.2x10^37 erg/s and 1.5x10^36 erg/s in the two states. In the high state the X-ray emission in the energy range 1-100 keV is well fitted by an absorbed power-law with photon index Gamma ~1.7 plus a blackbody component with a characteristic temperature of ~3.5 keV. Moreover, we find an evidence of an iron emission at ~6.8 keV, typical feature in this class of sources but never revealed before in the EXO 0531-6609.2 spectrum. In the low state an absorbed power-law with Gamma ~0.4 is sufficient to fit the 1-10 keV data. During BeppoSAX observations EXO 0531-6609.2 display variations of the pulse profile with the X-ray flux: it showed single peaked and double peaked profiles in the low and high state, respectively. Based on these two observations we infer a spin-up period derivative of -(1.14+/-0.08)x10^-10 s/s. By comparing these with other period measurements reported in literature we find an alternating spin-up and spin-down behaviour that correlates well with the X-ray luminosity.Comment: 6 pages, 8 figures, A&

    M 33 X-7: ChASeM33 reveals the first eclipsing black hole X-ray binary

    Get PDF
    The first observations conducted as part of the Chandra ACIS survey of M 33 (ChASeM33) sampled the eclipsing X-ray binary M 33 X-7 over a large part of the 3.45 d orbital period and have resolved eclipse ingress and egress for the first time. The occurrence of the X-ray eclipse allows us to determine an improved ephemeris of mid-eclipse and binary period as HJD (2453639.119+-0.005) +- N x (3.453014+-0.000020) and constrain the eclipse half angle to (26.5+-1.1) degree. There are indications for a shortening of the orbital period. The X-ray spectrum is best described by a disk blackbody spectrum typical for black hole X-ray binaries in the Galaxy. We find a flat power density spectrum and no significant regular pulsations were found in the frequency range of 10^{-4} to 0.15 Hz. HST WFPC2 images resolve the optical counterpart, which can be identified as an O6III star with the help of extinction and colour corrections derived from the X-ray absorption. Based on the optical light curve, the mass of the compact object in the system most likely exceeds 9 M_sun. This mass, the shape of the X-ray spectrum and the short term X-ray time variability identify M 33 X-7 as the first eclipsing black hole high mass X-ray binary.Comment: 14 pages, 5 figures, ApJ accepte

    On the nature of the flux variability during an expansion stage of a type I X-ray burst: Constraints on Neutron Star Parameters for 4U 1820-30

    Full text link
    Powerful Type I X-ray burst with strong radial expansion was observed from the low mass X-ray binary 4U 1820-30 with Rossi X-ray Timing Explorer on May 2, 1997. We investigate closely the flux profile during the burst expansion stage. Applying a semi-analytical model we are able to uncover the behavior of a photospheric radius and to simulate the evolution of neutron star (NS)-accretion disk system. The bottom flux L_{bot} is a few times the Eddington limit L_{Edd} for outer layers, because the electron cross-section is a few times less than the Thomson cross-section at such a high temperatures. The surplus of energy flux with respect to the Eddington, LbotLEddL_{bot}-L_{Edd}, goes into the potential energy of the expanded envelope. As cooling of the burning zone starts the surplus decreases and thus the envelope shrinks while the emergent photon flux stays the same L=LEddL=L_{Edd}. At a certain moment the NS low-hemisphere, previously screened by the disk, becomes visible to the observer. Consequently, the flux detected by the observer increases. Indeed, we observe to the paradoxical situation when the burning zone cools, but the apparent flux increases because of the NS-accretion disk geometry. We demonstrate a strong observational evidence of NS-accretion disk occultation in the behavior of the observed bolometric flux. We estimate the anisotropy due to geometry and find that the system should have a high inclination angle. Finally, we apply an analytical model of X-ray spectral formation in the neutron star atmosphere during burst decay stage to infer the neutron star (NS) mass-radius relation.Comment: 15 pages, 3 figures, accepted to ApJ

    The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic centre

    Get PDF
    We report on a detailed study of the spectral and temporal properties of the neutron star low mass X-ray binary SLX 1737-282, which is located only ~1degr away from Sgr A. The system is expected to have a short orbital period, even within the ultra-compact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 years apart. We infer (0.5-10 keV) X-ray luminosities in the range 3-6 x10^35erg s-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) black body component plus a Comptonized emission component with {\Gamma} ~1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ~ 20 per cent fractional root mean square amplitude of the fast variability (0.1 - 7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is >7 keV for the Suzaku observation, but it is measured to be as low as ~2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001 - 7 Hz). Finally, we investigated the origin of the low frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to 65 degr unless the orbital period is longer than 11 hr (i.e. the length of the XMM-Newton observation).Comment: 7 pages, 4 figures, 1 table. Accepted for publication in MNRA

    Timing and spectral studies of the transient X-ray pulsar EXO 053109-6609.2 with ASCA and Beppo-SAX

    Full text link
    We report timing and spectral properties of the transient Be X-ray pulsar EXO 053109--6609.2 studied using observations made with the ASCA and BeppoSAX observatories. Though there must have been at least one spin-down episode of the pulsar since its discovery, the new pulse period measurements show a monotonic spin-up trend since 1996. The pulse profile is found to have marginal energy dependence. There is also evidence for strong luminosity dependence of the pulse profile, a single peaked profile at low luminosity that changes to a double peaked profile at high luminosity. This suggests a change in the accretion pattern at certain luminosity level. The X-ray spectrum is found to consist of a simple power-law with photon index in the range of 0.4--0.8. At high intensity level the spectrum also shows presence of weak iron emission line.Comment: 12 pages, 8 figures, Accepted for publication in Ap

    Confronting Neutron Star Cooling Theories with New Observations

    Full text link
    With the successful launch of Chandra and XMM/Newton X-ray space missions combined with the lower-energy band observations, we are in the position where careful comparison of neutron star cooling theories with observations will make it possible to distinguish among various competing theories. For instance, the latest theoretical and observational developments already exclude both nucleon and kaon direct URCA cooling. In this way we can now have realistic hope for determining various important properties, such as the composition, degree of superfluidity, the equation of state and steller radius. These developments should help us obtain better insight into the properties of dense matter.Comment: 11 pages, 1 figur

    Constraints on the Equation-of-State of neutron stars from nearby neutron star observations

    Get PDF
    We try to constrain the Equation-of-State (EoS) of supra-nuclear-density matter in neutron stars (NSs) by observations of nearby NSs. There are seven thermally emitting NSs known from X-ray and optical observations, the so-called Magnificent Seven (M7), which are young (up to few Myrs), nearby (within a few hundred pc), and radio-quiet with blackbody-like X-ray spectra, so that we can observe their surfaces. As bright X-ray sources, we can determine their rotational (pulse) period and their period derivative from X-ray timing. From XMM and/or Chandra X-ray spectra, we can determine their temperature. With precise astrometric observations using the Hubble Space Telescope, we can determine their parallax (i.e. distance) and optical flux. From flux, distance, and temperature, one can derive the emitting area - with assumptions about the atmosphere and/or temperature distribution on the surface. This was recently done by us for the two brightest M7 NSs RXJ1856 and RXJ0720. Then, from identifying absorption lines in X-ray spectra, one can also try to determine gravitational redshift. Also, from rotational phase-resolved spectroscopy, we have for the first time determined the compactness (mass/radius) of the M7 NS RBS1223. If also applied to RXJ1856, radius (from luminosity and temperature) and compactness (from X-ray data) will yield the mass and radius - for the first time for an isolated single neutron star. We will present our observations and recent results.Comment: refereed NPA5 conference proceedings, in pres

    Analysis of Energy Conservation Options for USDOE Child Development Center, Final Summary Report

    Get PDF
    This report presents the results of a study that verifies the energy savings due to the individual ECOs through the use of a calibrated DOE-2 simulation. The results show that roughly 73% of the savings estimated by the GSA architect can be accounted for by the calibrated simulation. This compares very well when one considers that the large differences were contributed by the envelope improvements and the clerestory windows. If these two ECOs were omitted, 90% of the savings can be accounted for by the calibrated simulation.The U.S.D.O.E. Forrestal Child Development Center (CDC) was designed to be a "showpiece" model building. Its construction included energy efficient features such as efficient lighting, a photovoltaic system, an energy management system, lighting controls, envelope improvements, clerestory windows, energy efficient heat pumps, and a solar hot water system. The architect's estimate of the energy savings from these measures totaled 31.6 million Watt-hours per year (MWh/yr), an annual savings of about 1,580(at1,580 (at 0.05/kWh). This study calculated a total annual energy savings of 23.2 MWh per year for the CDC; a savings of $1,160
    corecore