5,836 research outputs found

    Numerical solution of cracked thin plates subjected to bending, twisting and shear loads

    Get PDF
    A semi-analytical method namely fractal finite element method is presented for the determination of mode I and mode II moment intensity factors for thin plate with crack using Kirchhoff's theory. Using the concept of fractal geometry, infinite many of finite elements is generated virtually around the crack border. Based on the analytical global displacement function, numerous degrees of freedom (DOF) are transformed to a small set of generalised coordinates in an expeditious way. The stress intensity factors can be obtained directly from the generalized coordinates. No post-processing and special finite elements are required to develop for extracting the stress intensity factors. Examples of cracked plate subjected to bending, twisting and shear loads are given to illustrate the accuracy and efficiency of the present method. The influence of finite boundaries on the calculation of the moment intensity factors is studied in details. Very accuracy results when compare with the theoretical and numerical counterparts are found.postprin

    A brief note on elastic T-stress for centred crack in anisotropic plate

    Get PDF
    The stress intensity factors (SIFs) and the T-stress for a planar crack with anisotropic materials are evaluated by the fractal finite element method (FFEM). The FFEM combines an exterior finite element model and a localized inner model near the crack tip. The mesh geometry of the latter is self-similar in radial layers around the tip. A higher order displacement series derived from Laurent series and Goursat functions is used to condense the large numbers of nodal displacements at the inner model near the crack tip into a small set of unknown coefficients. In this study, the variations of the SIFs and the T-stress with material properties and orientations of a crack are presented. The separation of the analytical displacement series into four fundamental cases has shown to be necessary in order to cover all the material variations and the orientations of a crack in the plate with general rectilinear anisotropic materials. © Springer 2005.postprin

    Numerical solutions of two-dimensional anisotropic crack problems

    Get PDF
    A complete set of series form solutions of stress and displacement functions, including all higher order terms, around the crack tip for anisotropic crack problems have been newly derived by eigenfunction expansion approach. The analytical solutions of displacement functions were classified into four cases with respect to different types of complex parameters and different corresponding physical meanings. By employing these displacement functions as global interpolation functions, fractal two-level finite element method (F2LFEM) was applied to evaluate the stress intensity factors (SIFs) for various kinds of anisotropic crack problems. In the method of F2LFEM, the infinite number of nodal displacements was transformed to a small set of generalized coordinates by fractal transformation technique. New element matrices need not be generated and the singular numerical integration was avoided completely. Numerical examples of the four cases were studied and high accurate results of SIFs were obtained. © 2003 Elsevier Ltd. All rights reserved.postprin

    Numerical solution of cracked thin plates subjected to bending, twisting and shear loads

    Get PDF
    A semi-analytical method namely fractal finite element method is presented for the determination of mode I and mode II moment intensity factors for thin plate with crack using Kirchhoff's theory. Using the concept of fractal geometry, infinite many of finite elements is generated virtually around the crack border. Based on the analytical global displacement function, numerous degrees of freedom (DOF) are transformed to a small set of generalised coordinates in an expeditious way. The stress intensity factors can be obtained directly from the generalized coordinates. No post-processing and special finite elements are required to develop for extracting the stress intensity factors. Examples of cracked plate subjected to bending, twisting and shear loads are given to illustrate the accuracy and efficiency of the present method. The influence of finite boundaries on the calculation of the moment intensity factors is studied in details. Very accuracy results when compare with the theoretical and numerical counterparts are found.postprin

    Five-year outcomes of western mental health training for Traditional Chinese Medicine Practitioners

    Get PDF
    published_or_final_versio

    Protein Degradation of RNA Polymerase II-Association Factor 1(PAF1) Is Controlled by CNOT4 and 26S Proteasome

    Get PDF
    The PAF complex (PAFc) participates in various steps of the transcriptional process, from initiation to termination, by interacting with and recruiting various proteins to the proper locus for each step. PAFc is an evolutionarily conserved, multi-protein complex comprising PAF1, CDC73, CTR9, LEO1, yRTF1 and, in humans, hSKI8. These components of PAFc work together, and their protein levels are closely interrelated. In the present study, we investigated the mechanism of PAF1 protein degradation. We found that PAF1 protein levels are negatively regulated by the expression of CNOT4, an ortholog of yNOT4 and a member of the CCR4-NOT complex. CNOT4 specifically controls PAF1 but not other components of PAFc at the protein level by regulating the polyubiquitination of PAF1 and its subsequent degradation by the 26S proteasome. The degradation of PAF1 was found to require nuclear localization, as no PAF1 degradation by CNOT4 and the 26S proteasome was observed with NLS (nucleus localization signal)-deficient PAF1 mutants. However, chromatin binding by PAF1 was not necessary for 26S proteasome- or CNOT4-mediated degradation. Our results suggest that CNOT4 controls the degradation of chromatin-unbound PAF1 via the 26S proteasome.open1184Ysciescopu

    Role of TRPM2 in H2O2-induced cell apoptosis in endothelial cells

    Get PDF
    Melastatin-like transient receptor potential channel 2 (TRPM2) is an oxidant-sensitive and cationic non-selective channel that is expressed in mammalian vascular endothelium. Here we investigated the functional role of TRPM2 channels in hydrogen peroxide (H(2)O(2))-induced cytosolic Ca(2+) ([Ca(2+)](i)) elavation, whole-cell current increase, and apoptotic cell death in murine heart microvessel endothelial cell line H5V. A TRPM2 blocking antibody (TM2E3), which targets the E3 region near the ion permeation pore of TRPM2, was developed. Treatment of H5V cells with TM2E3 reduced the [Ca(2+)](i) rise and whole-cell current change in response to H(2)O(2). Suppressing TRPM2 expression using TRPM2-specific short hairpin RNA (shRNA) had similar inhibitory effect. H(2)O(2)-induced apoptotic cell death in H5V cells was examined using MTT assay, DNA ladder formation analysis, and DAPI-based nuclear DNA condensation assay. Based on these assays, TM2E3 and TRPM2-specific shRNA both showed protective effect against H(2)O(2)-induced apoptotic cell death. TM2E3 and TRPM2-specific shRNA also protect the cells from tumor necrosis factor (TNF)-alpha-induced cell death in MTT assay. In contrast, overexpression of TRPM2 in H5V cells resulted in an increased response in [Ca(2+)](i) and whole-cell currents to H(2)O(2). TRPM2 overexpression also aggravated the H(2)O(2)-induced apoptotic cell death. Downstream pathways following TRPM2 activation was examined. Results showed that TRPM2 activity stimulated caspase-8, caspase-9 and caspase-3. These findings strongly suggest that TRPM2 channel mediates cellular Ca(2+) overload in response to H(2)O(2) and contribute to oxidant-induced apoptotic cell death in vascular endothelial cells. Down-regulating endogenous TRPM2 could be a means to protect the vascular endothelial cells from apoptotic cell death.published_or_final_versio

    Cyclic ADP ribose is a novel regulator of intracellular Ca 2+ oscillations in human bone marrow mesenchymal stem cells

    Get PDF
    Bone marrow mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine. However, the cellular biology of these cells is not fully understood. The present study characterizes the cyclic ADP-ribose (cADPR)-mediated Ca 2+ signals in human MSCs and finds that externally applied cADPR can increase the frequency of spontaneous intracellular Ca 2+ (Ca 2+ i) oscillations. The increase was abrogated by a specific cADPR antagonist or an inositol trisphosphate receptor (IP3R) inhibitor, but not by ryanodine. In addition, the cADPR-induced increase of Ca 2+ i oscillation frequency was prevented by inhibitors of nucleoside transporter or by inhibitors of the transient receptor potential cation melastatin-2 (TRPM2) channel. RT-PCR revealed mRNAs for the nucleoside transporters, concentrative nucleoside transporters 1/2 and equilibrative nucleoside transporters 1/3, IP3R1/2/3 and the TRPM2 channel, but not those for ryanodine receptors and CD38 in human MSCs. Knockdown of the TRPM2 channel by specific short interference RNA abolished the effect of cADPR on the Ca 2+ i oscillation frequency, and prevented the stimulation of proliferation by cADPR. Moreover, cADPR remarkably increased phosphorylated extracellular-signal-regulated kinases 1/2 (ERK1/2), but not Akt or p38 mitogen-activated protein kinase (MAPK). However, cADPR had no effect on adipogenesis or osteogenesis in human MSCs. Our results indicate that cADPR is a novel regulator of Ca 2+ i oscillations in human MSCs. It permeates the cell membrane through the nucleoside transporters and increases Ca 2+ oscillationviaactivation of the TRPM2 channel, resulting in enhanced phosphorylation of ERK1/2 and, thereby, stimulation of human MSC proliferation. This study delineates an alternate signalling pathway of cADPR that is distinct from its well-established role of serving as a Ca 2+ messenger for mobilizing the internal Ca 2+ stores. Whether cADPR can be used clinically for stimulating marrow function in patients with marrow disorders remains to be further studied. © 2011 The Authors © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.postprin

    Multiple Ca2+ signaling pathways regulate intracellular Ca 2+ activity in human cardiac fibroblasts

    Get PDF
    Ca2+ signaling pathways are well studied in cardiac myocytes, but not in cardiac fibroblasts. The aim of the present study is to characterize Ca2+ signaling pathways in cultured human cardiac fibroblasts using confocal scanning microscope and RT-PCR techniques. It was found that spontaneous intracellular Ca2+ (Cai 2+) oscillations were present in about 29% of human cardiac fibroblasts, and the number of cells with Cai 2+ oscillations was increased to 57.3% by application of 3% fetal bovine serum. Cai 2+ oscillations were dependent on Ca2+ entry. Cai2+ oscillations were abolished by the store-operated Ca2+ (SOC) entry channel blocker La3+, the phospholipase C inhibitor U-73122, and the inositol trisphosphate receptors (IP3Rs) inhibitor 2-aminoethoxydiphenyl borate, but not by ryanodine. The IP3R agonist thimerosal enhanced Ca2+ i oscillations. Inhibition of plasma membrane Ca2+ pump (PMCA) and Na+-Ca2+ exchanger (NCX) also suppressed Ca i 2+ oscillations. In addition, the frequency of Ca i 2+ oscillations was reduced by nifedipine, and increased by Bay K8644 in cells with spontaneous Cai 2+ oscillations. RT-PCR revealed that mRNAs for IP3R1-3, SERCA1-3, CaV1.2, NCX3, PMCA1,3,4, TRPC1,3,4,6, STIM1, and Orai1-3, were readily detectable, but not RyRs. Our results demonstrate for the first time that spontaneous Cai 2+ oscillations are present in cultured human cardiac fibroblasts and are regulated by multiple Ca2+ pathways, which are not identical to those of the well-studied contractile cardiomyocytes. This study provides a base for future investigations into how Ca2+ signals regulate biological activity in human cardiac fibroblasts and cardiac remodeling under pathological conditions. © 2009 Wiley-Liss, Inc.postprin

    Regulation of human cardiac KCNQ1/KCNE1 channel by epidermal growth factor receptor kinase

    Get PDF
    The aim of the present study was to investigate whether/how the recombinant human cardiac I Ks could be regulated by epidermal growth factor receptor kinase in HEK 293 cells stably expressing hKCNQ1/hKCNE1 genes using the approaches of perforated patch clamp technique, immunoprecipitation and Western blot analysis. It was found that the broad spectrum isoflavone tyrosine kinase inhibitor genistein and the selective epidermal growth factor receptor kinase inhibitor tyrphostin AG556 suppressed the recombinant I Ks, and their inhibition was countered by the protein tyrosine phosphatase inhibitor orthovanadate. The Src-family kinase inhibitor PP2 reduced the current, but the effect was not antagonized by orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of hKCNQ1 protein was decreased by genistein or AG556, but not by PP2. These results provide the novel information that epidermal growth factor receptor kinase, but not Src-family kinases, regulates the recombinant cardiac I Ks stably expressed in HEK 293 cells via phosphorylating KCNQ1 protein of the channel. © 2009 Elsevier B.V. All rights reserved.postprin
    corecore