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Abstract. The stress intensity factors (SIFs) and the T-stress for a planar crack with 
anisotropic materials are evaluated by the fractal finite element method (FFEM). The FFEM 
combines an exterior finite element model and a localized inner model near the crack tip. The 
mesh geometry of the latter is self-similar in radial layers around the tip. A higher order 
displacement series derived from Laurent series and Goursat functions is used to condense the 
large numbers of nodal displacements at the inner model near the crack tip into a small set of 
unknown coefficients. In this study, the variations of the SIFs and the T-stress with material 
properties and orientations of a crack are presented. The separation of the analytical 
displacement series into four fundamental cases is necessary to cover all the material 
variations and the orientations of a crack in the plate with general rectilinear anisotropic 
materials. 
 
Keywords: Anisotropic, planar crack, higher order terms, stress intensity factor, T-stress, 
fractal finite element. 
 
1.  Introduction. The T-stress which acts parallel to a crack corresponds to the second, non-
singular, term of the asymptotic stress field at the crack tip. The experimental tests conducted 
by Williams and Ewing (1972) on mixed mode fracture showed that the inclusion of this term 
could improve the accuracy of the theoretical predictions of the crack initiation angle and the 
critical stress intensity factors (SIFs). Other studies indicated that T-stress could influence the 
fracture toughness (Smith et al. 2001), the size and shape of the crack-tip plastic zone 
(Larsson and Carlsson 1973) and the crack path stability in isotropic materials (Cotterell and 
Rice 1980). Various numbers of analytical and numerical methods (Leevers and Radon 1982, 
Cardew et al. 1984, Kfouri 1986, Sham 1991, Karihaloo and Xiao 2001, Chen et al. 2001, 
Tan and Wang 2003, Chen and Tian 2000) have been developed to evaluate the T-stress for 
planar cracks in isotropic materials; however, only Chen and Tian (2000) have dealt with 
anisotropic materials. Recently, Su and Sun (2003) derived an asymptotic stress and 
displacement fields at the crack tip in an anisotropic elastic plate. By using the fractal finite 
element method (FFEM), the SIFs of cracked geometries in anisotropic materials were solved. 
In this study, the FFEM is applied to solve the T-stress of crack in the anisotropic plates and a 
new set of numerical solutions for centred crack in anisotropic plates are obtained. 
 
2.  Evaluation of SIFs and T-stress. Fig. 1 shows a through cracked composite lamina which 
can be assumed to be in a state of generalized plane stress which models as a homogeneous 
anisotropic material subjected to in-plane loading. The eigenfunction solutions for a crack in 
2-D anisotropic plate can be separated into four fundamental cases that are based upon its 
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material properties in which the first 3 cases correspond to orthotropic cases and the last case 
associated with rectilinear anisotropic case (Su and Sun 2003). The detailed classifications for 
the four cases are shown in Figure 1. The parameters 12121 2 vGEA −=  and 21 EEB =  are 
dependent on the material properties of the plate. 
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Fig 1. Classifications of 2-D anisotropic plate with crack. 
 
The FFEM (Su and Sun 2003) is used to determine the T-stress as well as the SIFs. The 
principle of the FFEM is that, while the local interpolating shape function can reduce an 
infinite number of degrees of freedom (DOF) within a finite element to finite number of the 
nodal displacements, the global interpolation functions derived from Laurent series and 
Goursat functions can further reduce the number of nodal displacements to a small set of 
unknown coefficients. By generating a self-similar mesh at the crack tip region with infinite 
number of DOF around the singular point, a higher order displacement series is used to 
condense the large numbers of nodal displacements near the crack tip to a small set of 
unknown coefficients. The SIF and the T-stress can be obtained directly from the generalized 
coordinates of the global interpolation functions without any post-processing technique.  
 
3. Numerical study for centred crack in anisotropic plate. A centred crack in an 
anisotropic plate as shown in Figure 2 with the crack length to plate width ratio (a/W) of 0.5 

Fig. 2. The finite element mesh for cracked plate: H/W=

and the aspect ratio of the plate (H/W) of 1 is used in the analysis.  

1 and a/W=0.5. 
 

he finite element mesh used to model the centred crack is shown in Figure 2. The total 
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number of nodes used is 686 and the total numbers of regular finite elements and fractal finite 
elements required are 136 and 16 respectively. Four numerical studies have been preformed. 
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The first and second examples aim at showing the convergence of the fracture parameters (the 
SIFs and the T-stress) from the orthotropic situation to the isotropic situation. The third and 
fourth examples illustrate the possible transition of the fracture parameters from case I to the 
other cases (II, III and IV). The results are summarized in Tables 1 to 4 for the four examples 
respectively. 
 
4.  Discussions. By means of the FFEM, the new solutions of the SIFs and the T-stress of a 
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Table 1. Variations of the SIF and T-stress from Case I to isotropic case. (E1 = 30.0 and 

ν12=0.3) 

a
K I

π
 T 

Case E2 G12

Present 

Bowie & 
Freese 
(1972) Present 

Cardew et 
al. (1984) 

300 17.6471 1.8167 1.85 -0.42543  
150 16.6667 1.6634  -0.65344  
100 15.7895 1.5668 1.57 -0.80578  

75 15.0000 1.5021  -0.92399  
60 14.2857 1.4551 1.46 -1.0226  
50 13.6364 1.4193  -1.1085  

42.8571 13.0435 1.3910 1.39 -1.1856  
37.5 12.5000 1.3681  -1.2560  

I 

33.3333 12.0000 1.3492 1.35 -1.3212  
Isotropic 30 11.5385 1.3334  -1.3823 -1.384 

27.2727 11.1111 1.3199 1.32 -1.4400  
25 10.7143 1.3083  -1.4949  
20 9.6774 1.2816 1.28 -1.6459  
12 7.3171 1.2358 1.24 -2.0596  

8.5714 5.8824 1.2153 1.22 -2.3969  

I 

6.6667 4.9180 1.2038 1.20 -2.6905  
 
Table 2. Variations of the SIF and T-stress from Case II to isotropic case. (E1 = 30.0 and 

ν12=0.3) 
T 

Case 
 

E2
  

G12 a
K I

π
 

present Cardew et 
al. (1984) 

14.4676 8.6207 1.2500 -1.8961  
15.4737 8.8632 1.2558 -1.8409  
16.5687 9.1152 1.2622 -1.7865  
17.7624 9.3773 1.2689 -1.7331  
19.0655 9.6500 1.2763 -1.6805  
20.4904 9.9338 1.2842 -1.6288  
22.0509 10.2291 1.2927 -1.5779  
23.7628 10.5367 1.3018 -1.5279  
25.6441 10.8570 1.3116 -1.4786  
27.7154 11.1907 1.3221 -1.4301  

II 

28.8294 11.3628 1.3277 -1.4061  
Isotropic 30.0  11.5385 1.3334 -1.3823 -1.384 
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Table 3. Variations of the SIF and T-stress from Case I to Case II and then to Case III. 
(E1 = 30.0, E2 = 300.0 and ν12=0.3) 

Case G12 KI T 
17 7.2008 -0.42296
19 7.2003 -0.42998
21 7.2032 -0.43541

I 

23 7.2086 -0.43967
II 24.34165 7.2133 -0.44201

26 7.2278 -0.44233
28 7.2373 -0.44476
30 7.2478 -0.44669

III 

32 7.2590 -0.44822
 

Table 4. Variations of the SIFs and T-stress from Case IV to Case I. (E1 = 30.0, E2 = 
300.0, G12 = 17.64706 and ν12=0.3) 

Case θ  ( °) KI KII T 
I 0 7.1986 0 -0.42587 

5 7.1642 -0.11892 -0.43112 
10 7.0707 -0.22711 -0.44696 
15 6.9367 -0.31773 -0.47302 
20 6.7736 -0.38776 -0.50840 
25 6.5843 -0.43662 -0.55430 
30 6.3726 -0.46596 -0.61554 
35 6.1457 -0.47776 -0.69716 
40 5.9102 -0.47224 -0.80119 
45 5.6747 -0.45035 -0.92870 
50 5.4523 -0.41680 -1.0835 
55 5.2545 -0.37681 -1.2726 
60 5.0823 -0.33041 -1.5044 
65 4.9314 -0.27736 -1.7886 
70 4.8027 -0.22265 -2.1416 
75 4.7059 -0.17449 -2.5886 
80 4.6537 -0.13440 -3.1328 

IV 

85 4.6364 -0.07885 -3.6531 
I 90 4.6335 0 -3.8810 
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