17 research outputs found

    Etude expérimentale des réactions de capture/désorption des iodes gazeux (I2, CH3I) sur des aérosols environnementaux

    No full text
    Gaseous iodine I131 mainly under I2 or CH3I forms, when released into the atmosphere during a severe nuclear power plant accident may affect both human health and environment. The atmospheric dispersion models of iodine do not take into account the potential reactivity of iodine with atmospheric gas or particles species. However, the modification of the chemical speciation and/or the physical form of iodine compounds is not without consequences on the transport of iodine in the atmosphere and its health effects. Within the framework of improving the atmospheric dispersion tools of radioactive iodine, this work aims to contribute to the actual state of knowledge of atmospheric iodine chemistry by experimental approaches focusing on understanding the CH3I-aerosols and CH3I-water interaction processes.The interaction between CH3I and water at the molecular scale has been investigated using cryogenic matrix experiments supported by theoretical DFT calculations. A large excess of water regarding CH3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH3I are observed despite the high water amount in the initial mixture together with mixed aggregates between CH3I and water polymers. This may be explained by the low affinity of CH3I with water. This result highlights that, in the atmosphere, gaseous CH3I and H2O will likely form aggregates of water and CH3I polymers instead of (CH3I)m-(H2O)n hetero complexes. Further, the interaction between CH3I and amorphous ice as a model of atmospheric ice have been preliminary investigated. The adsorption of CH3I on amorphous has been observed but with a complete desorption of CH3I above 47 K.Experimental study of interaction processes between gaseous iodine (CH3I) and both dry and wet NaCl as surrogate of sea salt aerosols has been carried out using Diffuse Reflectance Infrared Fourier Transformed Spectroscopy (DRIFTS). The DRIFTS spectra of NaCl surface clearly evidenced adsorbed CH3I on the NaCl surface particles. The FTIR spectra revealed new absorption bands that have been not clearly attributed. The adsorption process of CH3I on NaCl is likely a chemisorption since no desorption was observed. We have demonstrated that the adsorption of CH3I on NaCl did not reach saturation even after 5 hours of continuous flow of CH3I. CH3I capture at the NaCl surface presents a 1st order kinetics relative to its gas phase concentration. The uptake coefficients were determined to be in the order of 3 × 10-11, with a global adsorption energy of about -39 kJ.mol− 1. These results show a low probability of CH3I molecules to be captured by NaCl surface. The presence of water on the surface of NaCl seems to have no effect on the interaction between CH3I and NaCl, which is consistent with the low affinity of CH3I for water.The interactions of CH3I with various inorganic and organic powdered solids as models for atmospheric aerosols have been investigated using static reactor coupled with gas chromatography (GC) allowing the monitoring of the gas phase. We have highlighted a weak interaction between CH3I and inorganic and organic aerosols indicating a low affinity of CH3I whatever the aerosol surface composition. We hypothesis that the water content at the aerosol surface is a key parameter. So that, when released in the atmosphere, CH3I will interact very little with the surface of the aerosols and will stay in the gaseous phase. However, although in low content, a part of CH3I is irreversibly adsorbed on the surface of the halide salts that could be considered in the atmospheric iodine model to estimate potential impact.Lors d'un grave accident de centrale nuclĂ©aire l'iode gazeux I131, Ă©mit principalement sous les formes I2 ou CH3I, peut affecter la santĂ© humaine et l'environnement lors de son rejet dans l'atmosphĂšre. Les modĂšles de dispersion de l'iode ne tiennent pas compte de la rĂ©activitĂ© de l'iode avec les espĂšces gazeuses ou les aĂ©rosols atmosphĂ©riques. Cependant, la modification de la spĂ©ciation chimique et/ou la forme physique des composĂ©s de l’iode n’est pas sans consĂ©quence sur leur dispersion et leurs impacts sanitaires. Dans le cadre de l'amĂ©lioration des outils de simulation de la dispersion atmosphĂ©rique de l’iode radioactif, ce travail vise Ă  contribuer Ă  l'Ă©tat actuel des connaissances sur la chimie de l'iode par une approche expĂ©rimentale permettant la comprĂ©hension des processus d'interaction entre CH3I gazeux, les aĂ©rosols et l'eau.L'interaction entre CH3I et l'eau a Ă©tĂ© Ă©tudiĂ©e Ă  l'Ă©chelle molĂ©culaire par des expĂ©riences en matrice cryogĂ©nique appuyĂ©es par des calculs thĂ©oriques. Un excĂšs d'eau en regard de CH3I, a Ă©tĂ© utilisĂ© pour simuler les conditions atmosphĂ©riques. Les dimĂšres et trimĂšres de CH3I sont observĂ©s malgrĂ© la quantitĂ© Ă©levĂ©e d'eau ainsi que la formation d’agrĂ©gats mixtes de CH3I et de polymĂšres d’eau. Ceci peut s'expliquer par la faible affinitĂ© du CH3I pour l'eau. Dans l'atmosphĂšre, CH3I et H2O gazeux formeront probablement des agrĂ©gats d'eau et des polymĂšres de CH3I au lieu d'hĂ©tĂ©ro complexes de type (CH3I)m-(H2O)n. L'interaction entre CH3I et la glace amorphe en tant que modĂšle de glace atmosphĂ©rique a fait l'objet d'une Ă©tude prĂ©liminaire. L'adsorption de CH3I sur la glace amorphe et sa dĂ©sorption complĂšte au-delĂ  de 47 K ont Ă©tĂ© observĂ©s.L'Ă©tude expĂ©rimentale des processus d’interactions entre CH3I et le NaCl sec et humide comme modĂšle des sels marins a Ă©tĂ© rĂ©alisĂ©e en utilisant la Spectroscopie Infrarouge Ă  TransformĂ©e de Fourier par RĂ©flexion Diffuse (DRIFTS). Les spectres DRIFTS de la surface de NaCl mettent en Ă©vidence CH3I adsorbĂ© sur la surface de NaCl. Les spectres FTIR montrent de nouvelles bandes d’absorption, qui n’ont pas pu ĂȘtre clairement attribuĂ©es. Le processus d'adsorption de CH3I sur NaCl est probablement une chimisorption puisqu'aucune dĂ©sorption n'a Ă©tĂ© observĂ©e. Nous avons dĂ©montrĂ© que l'adsorption du CH3I n’atteint pas la saturation mĂȘme aprĂšs 5 heures d’exposition. Ce processus prĂ©sente une cinĂ©tique d’ordre 1 par rapport Ă  la concentration de CH3I en phase gazeuse. Les coefficients d'absorption sont de l'ordre de 3 × 10-11, avec une Ă©nergie globale d'absorption de -39 kJ.mol-1. Ces rĂ©sultats montrent une faible probabilitĂ© de capture des molĂ©cules de CH3I par la surface de NaCl. La prĂ©sence d'eau Ă  la surface de NaCl ne semble pas modifier l'interaction entre CH3I et NaCl, ce qui est cohĂ©rent avec sa faible affinitĂ© pour l'eau.Les interactions de CH3I avec divers solides inorganiques et organiques comme modĂšles pour les aĂ©rosols atmosphĂ©riques ont Ă©tĂ© Ă©tudiĂ©es Ă  l’aide d’un rĂ©acteur statique couplĂ© Ă  la chromatographie en phase gazeuse permettant de suivre la phase gazeuse. Nous avons montrĂ© une faible interaction entre CH3I et les aĂ©rosols Ă©tudiĂ©s indiquant sa faible affinitĂ© pour les surfaces des aĂ©rosols quelle que soit leur composition. Nous Ă©mettons l'hypothĂšse que la teneur en eau en surface de l'aĂ©rosol est un paramĂštre clĂ©. Ainsi, lorsqu'il est libĂ©rĂ© dans l'atmosphĂšre, CH3I interagit trĂšs peu avec la surface des aĂ©rosols et reste en phase gazeuse. Cependant, bien qu’en faible teneur, CH3I est irrĂ©versiblement adsorbĂ© Ă  la surface des sels d’halogĂ©nures, ce qui pourrait ĂȘtre pris en compte dans le modĂšle de dispersion pour en Ă©valuer l’impact

    Experimental study on the Capture/Desorption of gaseous iodine (I2, CH3I) on environmental aerosols

    No full text
    Lors d'un grave accident de centrale nuclĂ©aire l'iode gazeux I131, Ă©mit principalement sous les formes I2 ou CH3I, peut affecter la santĂ© humaine et l'environnement lors de son rejet dans l'atmosphĂšre. Les modĂšles de dispersion de l'iode ne tiennent pas compte de la rĂ©activitĂ© de l'iode avec les espĂšces gazeuses ou les aĂ©rosols atmosphĂ©riques. Cependant, la modification de la spĂ©ciation chimique et/ou la forme physique des composĂ©s de l’iode n’est pas sans consĂ©quence sur leur dispersion et leurs impacts sanitaires. Dans le cadre de l'amĂ©lioration des outils de simulation de la dispersion atmosphĂ©rique de l’iode radioactif, ce travail vise Ă  contribuer Ă  l'Ă©tat actuel des connaissances sur la chimie de l'iode par une approche expĂ©rimentale permettant la comprĂ©hension des processus d'interaction entre CH3I gazeux, les aĂ©rosols et l'eau.L'interaction entre CH3I et l'eau a Ă©tĂ© Ă©tudiĂ©e Ă  l'Ă©chelle molĂ©culaire par des expĂ©riences en matrice cryogĂ©nique appuyĂ©es par des calculs thĂ©oriques. Un excĂšs d'eau en regard de CH3I, a Ă©tĂ© utilisĂ© pour simuler les conditions atmosphĂ©riques. Les dimĂšres et trimĂšres de CH3I sont observĂ©s malgrĂ© la quantitĂ© Ă©levĂ©e d'eau ainsi que la formation d’agrĂ©gats mixtes de CH3I et de polymĂšres d’eau. Ceci peut s'expliquer par la faible affinitĂ© du CH3I pour l'eau. Dans l'atmosphĂšre, CH3I et H2O gazeux formeront probablement des agrĂ©gats d'eau et des polymĂšres de CH3I au lieu d'hĂ©tĂ©ro complexes de type (CH3I)m-(H2O)n. L'interaction entre CH3I et la glace amorphe en tant que modĂšle de glace atmosphĂ©rique a fait l'objet d'une Ă©tude prĂ©liminaire. L'adsorption de CH3I sur la glace amorphe et sa dĂ©sorption complĂšte au-delĂ  de 47 K ont Ă©tĂ© observĂ©s.L'Ă©tude expĂ©rimentale des processus d’interactions entre CH3I et le NaCl sec et humide comme modĂšle des sels marins a Ă©tĂ© rĂ©alisĂ©e en utilisant la Spectroscopie Infrarouge Ă  TransformĂ©e de Fourier par RĂ©flexion Diffuse (DRIFTS). Les spectres DRIFTS de la surface de NaCl mettent en Ă©vidence CH3I adsorbĂ© sur la surface de NaCl. Les spectres FTIR montrent de nouvelles bandes d’absorption, qui n’ont pas pu ĂȘtre clairement attribuĂ©es. Le processus d'adsorption de CH3I sur NaCl est probablement une chimisorption puisqu'aucune dĂ©sorption n'a Ă©tĂ© observĂ©e. Nous avons dĂ©montrĂ© que l'adsorption du CH3I n’atteint pas la saturation mĂȘme aprĂšs 5 heures d’exposition. Ce processus prĂ©sente une cinĂ©tique d’ordre 1 par rapport Ă  la concentration de CH3I en phase gazeuse. Les coefficients d'absorption sont de l'ordre de 3 × 10-11, avec une Ă©nergie globale d'absorption de -39 kJ.mol-1. Ces rĂ©sultats montrent une faible probabilitĂ© de capture des molĂ©cules de CH3I par la surface de NaCl. La prĂ©sence d'eau Ă  la surface de NaCl ne semble pas modifier l'interaction entre CH3I et NaCl, ce qui est cohĂ©rent avec sa faible affinitĂ© pour l'eau.Les interactions de CH3I avec divers solides inorganiques et organiques comme modĂšles pour les aĂ©rosols atmosphĂ©riques ont Ă©tĂ© Ă©tudiĂ©es Ă  l’aide d’un rĂ©acteur statique couplĂ© Ă  la chromatographie en phase gazeuse permettant de suivre la phase gazeuse. Nous avons montrĂ© une faible interaction entre CH3I et les aĂ©rosols Ă©tudiĂ©s indiquant sa faible affinitĂ© pour les surfaces des aĂ©rosols quelle que soit leur composition. Nous Ă©mettons l'hypothĂšse que la teneur en eau en surface de l'aĂ©rosol est un paramĂštre clĂ©. Ainsi, lorsqu'il est libĂ©rĂ© dans l'atmosphĂšre, CH3I interagit trĂšs peu avec la surface des aĂ©rosols et reste en phase gazeuse. Cependant, bien qu’en faible teneur, CH3I est irrĂ©versiblement adsorbĂ© Ă  la surface des sels d’halogĂ©nures, ce qui pourrait ĂȘtre pris en compte dans le modĂšle de dispersion pour en Ă©valuer l’impact.Gaseous iodine I131 mainly under I2 or CH3I forms, when released into the atmosphere during a severe nuclear power plant accident may affect both human health and environment. The atmospheric dispersion models of iodine do not take into account the potential reactivity of iodine with atmospheric gas or particles species. However, the modification of the chemical speciation and/or the physical form of iodine compounds is not without consequences on the transport of iodine in the atmosphere and its health effects. Within the framework of improving the atmospheric dispersion tools of radioactive iodine, this work aims to contribute to the actual state of knowledge of atmospheric iodine chemistry by experimental approaches focusing on understanding the CH3I-aerosols and CH3I-water interaction processes.The interaction between CH3I and water at the molecular scale has been investigated using cryogenic matrix experiments supported by theoretical DFT calculations. A large excess of water regarding CH3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH3I are observed despite the high water amount in the initial mixture together with mixed aggregates between CH3I and water polymers. This may be explained by the low affinity of CH3I with water. This result highlights that, in the atmosphere, gaseous CH3I and H2O will likely form aggregates of water and CH3I polymers instead of (CH3I)m-(H2O)n hetero complexes. Further, the interaction between CH3I and amorphous ice as a model of atmospheric ice have been preliminary investigated. The adsorption of CH3I on amorphous has been observed but with a complete desorption of CH3I above 47 K.Experimental study of interaction processes between gaseous iodine (CH3I) and both dry and wet NaCl as surrogate of sea salt aerosols has been carried out using Diffuse Reflectance Infrared Fourier Transformed Spectroscopy (DRIFTS). The DRIFTS spectra of NaCl surface clearly evidenced adsorbed CH3I on the NaCl surface particles. The FTIR spectra revealed new absorption bands that have been not clearly attributed. The adsorption process of CH3I on NaCl is likely a chemisorption since no desorption was observed. We have demonstrated that the adsorption of CH3I on NaCl did not reach saturation even after 5 hours of continuous flow of CH3I. CH3I capture at the NaCl surface presents a 1st order kinetics relative to its gas phase concentration. The uptake coefficients were determined to be in the order of 3 × 10-11, with a global adsorption energy of about -39 kJ.mol− 1. These results show a low probability of CH3I molecules to be captured by NaCl surface. The presence of water on the surface of NaCl seems to have no effect on the interaction between CH3I and NaCl, which is consistent with the low affinity of CH3I for water.The interactions of CH3I with various inorganic and organic powdered solids as models for atmospheric aerosols have been investigated using static reactor coupled with gas chromatography (GC) allowing the monitoring of the gas phase. We have highlighted a weak interaction between CH3I and inorganic and organic aerosols indicating a low affinity of CH3I whatever the aerosol surface composition. We hypothesis that the water content at the aerosol surface is a key parameter. So that, when released in the atmosphere, CH3I will interact very little with the surface of the aerosols and will stay in the gaseous phase. However, although in low content, a part of CH3I is irreversibly adsorbed on the surface of the halide salts that could be considered in the atmospheric iodine model to estimate potential impact

    Etude expérimentale des réactions de capture/désorption des iodes gazeux (I2, CH3I) sur des aérosols environnementaux

    No full text
    Gaseous iodine I131 mainly under I2 or CH3I forms, when released into the atmosphere during a severe nuclear power plant accident may affect both human health and environment. The atmospheric dispersion models of iodine do not take into account the potential reactivity of iodine with atmospheric gas or particles species. However, the modification of the chemical speciation and/or the physical form of iodine compounds is not without consequences on the transport of iodine in the atmosphere and its health effects. Within the framework of improving the atmospheric dispersion tools of radioactive iodine, this work aims to contribute to the actual state of knowledge of atmospheric iodine chemistry by experimental approaches focusing on understanding the CH3I-aerosols and CH3I-water interaction processes.The interaction between CH3I and water at the molecular scale has been investigated using cryogenic matrix experiments supported by theoretical DFT calculations. A large excess of water regarding CH3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH3I are observed despite the high water amount in the initial mixture together with mixed aggregates between CH3I and water polymers. This may be explained by the low affinity of CH3I with water. This result highlights that, in the atmosphere, gaseous CH3I and H2O will likely form aggregates of water and CH3I polymers instead of (CH3I)m-(H2O)n hetero complexes. Further, the interaction between CH3I and amorphous ice as a model of atmospheric ice have been preliminary investigated. The adsorption of CH3I on amorphous has been observed but with a complete desorption of CH3I above 47 K.Experimental study of interaction processes between gaseous iodine (CH3I) and both dry and wet NaCl as surrogate of sea salt aerosols has been carried out using Diffuse Reflectance Infrared Fourier Transformed Spectroscopy (DRIFTS). The DRIFTS spectra of NaCl surface clearly evidenced adsorbed CH3I on the NaCl surface particles. The FTIR spectra revealed new absorption bands that have been not clearly attributed. The adsorption process of CH3I on NaCl is likely a chemisorption since no desorption was observed. We have demonstrated that the adsorption of CH3I on NaCl did not reach saturation even after 5 hours of continuous flow of CH3I. CH3I capture at the NaCl surface presents a 1st order kinetics relative to its gas phase concentration. The uptake coefficients were determined to be in the order of 3 × 10-11, with a global adsorption energy of about -39 kJ.mol− 1. These results show a low probability of CH3I molecules to be captured by NaCl surface. The presence of water on the surface of NaCl seems to have no effect on the interaction between CH3I and NaCl, which is consistent with the low affinity of CH3I for water.The interactions of CH3I with various inorganic and organic powdered solids as models for atmospheric aerosols have been investigated using static reactor coupled with gas chromatography (GC) allowing the monitoring of the gas phase. We have highlighted a weak interaction between CH3I and inorganic and organic aerosols indicating a low affinity of CH3I whatever the aerosol surface composition. We hypothesis that the water content at the aerosol surface is a key parameter. So that, when released in the atmosphere, CH3I will interact very little with the surface of the aerosols and will stay in the gaseous phase. However, although in low content, a part of CH3I is irreversibly adsorbed on the surface of the halide salts that could be considered in the atmospheric iodine model to estimate potential impact.Lors d'un grave accident de centrale nuclĂ©aire l'iode gazeux I131, Ă©mit principalement sous les formes I2 ou CH3I, peut affecter la santĂ© humaine et l'environnement lors de son rejet dans l'atmosphĂšre. Les modĂšles de dispersion de l'iode ne tiennent pas compte de la rĂ©activitĂ© de l'iode avec les espĂšces gazeuses ou les aĂ©rosols atmosphĂ©riques. Cependant, la modification de la spĂ©ciation chimique et/ou la forme physique des composĂ©s de l’iode n’est pas sans consĂ©quence sur leur dispersion et leurs impacts sanitaires. Dans le cadre de l'amĂ©lioration des outils de simulation de la dispersion atmosphĂ©rique de l’iode radioactif, ce travail vise Ă  contribuer Ă  l'Ă©tat actuel des connaissances sur la chimie de l'iode par une approche expĂ©rimentale permettant la comprĂ©hension des processus d'interaction entre CH3I gazeux, les aĂ©rosols et l'eau.L'interaction entre CH3I et l'eau a Ă©tĂ© Ă©tudiĂ©e Ă  l'Ă©chelle molĂ©culaire par des expĂ©riences en matrice cryogĂ©nique appuyĂ©es par des calculs thĂ©oriques. Un excĂšs d'eau en regard de CH3I, a Ă©tĂ© utilisĂ© pour simuler les conditions atmosphĂ©riques. Les dimĂšres et trimĂšres de CH3I sont observĂ©s malgrĂ© la quantitĂ© Ă©levĂ©e d'eau ainsi que la formation d’agrĂ©gats mixtes de CH3I et de polymĂšres d’eau. Ceci peut s'expliquer par la faible affinitĂ© du CH3I pour l'eau. Dans l'atmosphĂšre, CH3I et H2O gazeux formeront probablement des agrĂ©gats d'eau et des polymĂšres de CH3I au lieu d'hĂ©tĂ©ro complexes de type (CH3I)m-(H2O)n. L'interaction entre CH3I et la glace amorphe en tant que modĂšle de glace atmosphĂ©rique a fait l'objet d'une Ă©tude prĂ©liminaire. L'adsorption de CH3I sur la glace amorphe et sa dĂ©sorption complĂšte au-delĂ  de 47 K ont Ă©tĂ© observĂ©s.L'Ă©tude expĂ©rimentale des processus d’interactions entre CH3I et le NaCl sec et humide comme modĂšle des sels marins a Ă©tĂ© rĂ©alisĂ©e en utilisant la Spectroscopie Infrarouge Ă  TransformĂ©e de Fourier par RĂ©flexion Diffuse (DRIFTS). Les spectres DRIFTS de la surface de NaCl mettent en Ă©vidence CH3I adsorbĂ© sur la surface de NaCl. Les spectres FTIR montrent de nouvelles bandes d’absorption, qui n’ont pas pu ĂȘtre clairement attribuĂ©es. Le processus d'adsorption de CH3I sur NaCl est probablement une chimisorption puisqu'aucune dĂ©sorption n'a Ă©tĂ© observĂ©e. Nous avons dĂ©montrĂ© que l'adsorption du CH3I n’atteint pas la saturation mĂȘme aprĂšs 5 heures d’exposition. Ce processus prĂ©sente une cinĂ©tique d’ordre 1 par rapport Ă  la concentration de CH3I en phase gazeuse. Les coefficients d'absorption sont de l'ordre de 3 × 10-11, avec une Ă©nergie globale d'absorption de -39 kJ.mol-1. Ces rĂ©sultats montrent une faible probabilitĂ© de capture des molĂ©cules de CH3I par la surface de NaCl. La prĂ©sence d'eau Ă  la surface de NaCl ne semble pas modifier l'interaction entre CH3I et NaCl, ce qui est cohĂ©rent avec sa faible affinitĂ© pour l'eau.Les interactions de CH3I avec divers solides inorganiques et organiques comme modĂšles pour les aĂ©rosols atmosphĂ©riques ont Ă©tĂ© Ă©tudiĂ©es Ă  l’aide d’un rĂ©acteur statique couplĂ© Ă  la chromatographie en phase gazeuse permettant de suivre la phase gazeuse. Nous avons montrĂ© une faible interaction entre CH3I et les aĂ©rosols Ă©tudiĂ©s indiquant sa faible affinitĂ© pour les surfaces des aĂ©rosols quelle que soit leur composition. Nous Ă©mettons l'hypothĂšse que la teneur en eau en surface de l'aĂ©rosol est un paramĂštre clĂ©. Ainsi, lorsqu'il est libĂ©rĂ© dans l'atmosphĂšre, CH3I interagit trĂšs peu avec la surface des aĂ©rosols et reste en phase gazeuse. Cependant, bien qu’en faible teneur, CH3I est irrĂ©versiblement adsorbĂ© Ă  la surface des sels d’halogĂ©nures, ce qui pourrait ĂȘtre pris en compte dans le modĂšle de dispersion pour en Ă©valuer l’impact

    Etude expérimentale des réactions de capture/désorption des iodes gazeux (I2, CH3I) sur des aérosols environnementaux

    No full text
    Gaseous iodine I131 mainly under I2 or CH3I forms, when released into the atmosphere during a severe nuclear power plant accident may affect both human health and environment. The atmospheric dispersion models of iodine do not take into account the potential reactivity of iodine with atmospheric gas or particles species. However, the modification of the chemical speciation and/or the physical form of iodine compounds is not without consequences on the transport of iodine in the atmosphere and its health effects. Within the framework of improving the atmospheric dispersion tools of radioactive iodine, this work aims to contribute to the actual state of knowledge of atmospheric iodine chemistry by experimental approaches focusing on understanding the CH3I-aerosols and CH3I-water interaction processes.The interaction between CH3I and water at the molecular scale has been investigated using cryogenic matrix experiments supported by theoretical DFT calculations. A large excess of water regarding CH3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH3I are observed despite the high water amount in the initial mixture together with mixed aggregates between CH3I and water polymers. This may be explained by the low affinity of CH3I with water. This result highlights that, in the atmosphere, gaseous CH3I and H2O will likely form aggregates of water and CH3I polymers instead of (CH3I)m-(H2O)n hetero complexes. Further, the interaction between CH3I and amorphous ice as a model of atmospheric ice have been preliminary investigated. The adsorption of CH3I on amorphous has been observed but with a complete desorption of CH3I above 47 K.Experimental study of interaction processes between gaseous iodine (CH3I) and both dry and wet NaCl as surrogate of sea salt aerosols has been carried out using Diffuse Reflectance Infrared Fourier Transformed Spectroscopy (DRIFTS). The DRIFTS spectra of NaCl surface clearly evidenced adsorbed CH3I on the NaCl surface particles. The FTIR spectra revealed new absorption bands that have been not clearly attributed. The adsorption process of CH3I on NaCl is likely a chemisorption since no desorption was observed. We have demonstrated that the adsorption of CH3I on NaCl did not reach saturation even after 5 hours of continuous flow of CH3I. CH3I capture at the NaCl surface presents a 1st order kinetics relative to its gas phase concentration. The uptake coefficients were determined to be in the order of 3 × 10-11, with a global adsorption energy of about -39 kJ.mol− 1. These results show a low probability of CH3I molecules to be captured by NaCl surface. The presence of water on the surface of NaCl seems to have no effect on the interaction between CH3I and NaCl, which is consistent with the low affinity of CH3I for water.The interactions of CH3I with various inorganic and organic powdered solids as models for atmospheric aerosols have been investigated using static reactor coupled with gas chromatography (GC) allowing the monitoring of the gas phase. We have highlighted a weak interaction between CH3I and inorganic and organic aerosols indicating a low affinity of CH3I whatever the aerosol surface composition. We hypothesis that the water content at the aerosol surface is a key parameter. So that, when released in the atmosphere, CH3I will interact very little with the surface of the aerosols and will stay in the gaseous phase. However, although in low content, a part of CH3I is irreversibly adsorbed on the surface of the halide salts that could be considered in the atmospheric iodine model to estimate potential impact.Lors d'un grave accident de centrale nuclĂ©aire l'iode gazeux I131, Ă©mit principalement sous les formes I2 ou CH3I, peut affecter la santĂ© humaine et l'environnement lors de son rejet dans l'atmosphĂšre. Les modĂšles de dispersion de l'iode ne tiennent pas compte de la rĂ©activitĂ© de l'iode avec les espĂšces gazeuses ou les aĂ©rosols atmosphĂ©riques. Cependant, la modification de la spĂ©ciation chimique et/ou la forme physique des composĂ©s de l’iode n’est pas sans consĂ©quence sur leur dispersion et leurs impacts sanitaires. Dans le cadre de l'amĂ©lioration des outils de simulation de la dispersion atmosphĂ©rique de l’iode radioactif, ce travail vise Ă  contribuer Ă  l'Ă©tat actuel des connaissances sur la chimie de l'iode par une approche expĂ©rimentale permettant la comprĂ©hension des processus d'interaction entre CH3I gazeux, les aĂ©rosols et l'eau.L'interaction entre CH3I et l'eau a Ă©tĂ© Ă©tudiĂ©e Ă  l'Ă©chelle molĂ©culaire par des expĂ©riences en matrice cryogĂ©nique appuyĂ©es par des calculs thĂ©oriques. Un excĂšs d'eau en regard de CH3I, a Ă©tĂ© utilisĂ© pour simuler les conditions atmosphĂ©riques. Les dimĂšres et trimĂšres de CH3I sont observĂ©s malgrĂ© la quantitĂ© Ă©levĂ©e d'eau ainsi que la formation d’agrĂ©gats mixtes de CH3I et de polymĂšres d’eau. Ceci peut s'expliquer par la faible affinitĂ© du CH3I pour l'eau. Dans l'atmosphĂšre, CH3I et H2O gazeux formeront probablement des agrĂ©gats d'eau et des polymĂšres de CH3I au lieu d'hĂ©tĂ©ro complexes de type (CH3I)m-(H2O)n. L'interaction entre CH3I et la glace amorphe en tant que modĂšle de glace atmosphĂ©rique a fait l'objet d'une Ă©tude prĂ©liminaire. L'adsorption de CH3I sur la glace amorphe et sa dĂ©sorption complĂšte au-delĂ  de 47 K ont Ă©tĂ© observĂ©s.L'Ă©tude expĂ©rimentale des processus d’interactions entre CH3I et le NaCl sec et humide comme modĂšle des sels marins a Ă©tĂ© rĂ©alisĂ©e en utilisant la Spectroscopie Infrarouge Ă  TransformĂ©e de Fourier par RĂ©flexion Diffuse (DRIFTS). Les spectres DRIFTS de la surface de NaCl mettent en Ă©vidence CH3I adsorbĂ© sur la surface de NaCl. Les spectres FTIR montrent de nouvelles bandes d’absorption, qui n’ont pas pu ĂȘtre clairement attribuĂ©es. Le processus d'adsorption de CH3I sur NaCl est probablement une chimisorption puisqu'aucune dĂ©sorption n'a Ă©tĂ© observĂ©e. Nous avons dĂ©montrĂ© que l'adsorption du CH3I n’atteint pas la saturation mĂȘme aprĂšs 5 heures d’exposition. Ce processus prĂ©sente une cinĂ©tique d’ordre 1 par rapport Ă  la concentration de CH3I en phase gazeuse. Les coefficients d'absorption sont de l'ordre de 3 × 10-11, avec une Ă©nergie globale d'absorption de -39 kJ.mol-1. Ces rĂ©sultats montrent une faible probabilitĂ© de capture des molĂ©cules de CH3I par la surface de NaCl. La prĂ©sence d'eau Ă  la surface de NaCl ne semble pas modifier l'interaction entre CH3I et NaCl, ce qui est cohĂ©rent avec sa faible affinitĂ© pour l'eau.Les interactions de CH3I avec divers solides inorganiques et organiques comme modĂšles pour les aĂ©rosols atmosphĂ©riques ont Ă©tĂ© Ă©tudiĂ©es Ă  l’aide d’un rĂ©acteur statique couplĂ© Ă  la chromatographie en phase gazeuse permettant de suivre la phase gazeuse. Nous avons montrĂ© une faible interaction entre CH3I et les aĂ©rosols Ă©tudiĂ©s indiquant sa faible affinitĂ© pour les surfaces des aĂ©rosols quelle que soit leur composition. Nous Ă©mettons l'hypothĂšse que la teneur en eau en surface de l'aĂ©rosol est un paramĂštre clĂ©. Ainsi, lorsqu'il est libĂ©rĂ© dans l'atmosphĂšre, CH3I interagit trĂšs peu avec la surface des aĂ©rosols et reste en phase gazeuse. Cependant, bien qu’en faible teneur, CH3I est irrĂ©versiblement adsorbĂ© Ă  la surface des sels d’halogĂ©nures, ce qui pourrait ĂȘtre pris en compte dans le modĂšle de dispersion pour en Ă©valuer l’impact

    Interaction process between gaseous CH 3 I and NaCl particles: implication for iodine dispersion in the atmosphere

    No full text
    International audienceGaseous iodomethane (CH 3 I) once emitted in the atmosphere will interact very little with sea salt aerosol particles. However, a low amount of CH 3 I is irreversibly adsorbed at the particle surface

    Infrared matrix- isolation and theoretical studies of interactions between CH3I and water

    No full text
    International audienceGaseous methyl iodine (CH3I) is naturally emitted in the atmosphere over oceans through the algae and phytoplankton activities. The fate of naturally emitted CH3I is of great interest because of the oxidizing properties of iodine and its impact on the catalytic destruction of the ozone layer. Additionally, CH3I is one of the gaseous species that can be produced in the case of severe nuclear accident, so, its radiological impact requires knowledge about its behavior in the atmosphere. Water is one of the major species in the atmosphere, which is responsible for atmospheric aerosol nucleation and cloud condensation nuclei. Water can also act as a reactive medium leading to secondary product formation. The study of the interaction between methyl iodine and water at the molecular scale is contributing for a better understanding of the fate of such halogen alkyl into the atmosphere. Here the micro-hydration of CH3I was investigated using cryogenic matrix experiments which were supported by theoretical DFT calculations. A large excess of water regarding CH3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH3I were observed despite the high water amount in the initial mixture. This may be explained by the low affinity of CH3I with water. Considering the concentration of CH3I used in the experiments, the aggregates are likely formed in the gas phase. The interaction between CH3I and H2O molecules studied for the first time experimentally and supported by DFT calculations highlights that, in the atmosphere, gaseous methyl iodine and water will likely form aggregates of water and CH3I polymers instead of (CH3I)m-(H2O)n hetero complexes. However, mixed CH3I:H2O complexes 1:1, 1:2 and 1:3 (see Figure) have been observed , whereas 2:1 and 2:2 complexes appear as minor species

    Infrared matrix- isolation and theoretical studies of interactions between CH3I and water

    No full text
    International audienceGaseous methyl iodine (CH3I) is naturally emitted in the atmosphere over oceans through the algae and phytoplankton activities. The fate of naturally emitted CH3I is of great interest because of the oxidizing properties of iodine and its impact on the catalytic destruction of the ozone layer. Additionally, CH3I is one of the gaseous species that can be produced in the case of severe nuclear accident, so, its radiological impact requires knowledge about its behavior in the atmosphere. Water is one of the major species in the atmosphere, which is responsible for atmospheric aerosol nucleation and cloud condensation nuclei. Water can also act as a reactive medium leading to secondary product formation. The study of the interaction between methyl iodine and water at the molecular scale is contributing for a better understanding of the fate of such halogen alkyl into the atmosphere. Here the micro-hydration of CH3I was investigated using cryogenic matrix experiments which were supported by theoretical DFT calculations. A large excess of water regarding CH3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH3I were observed despite the high water amount in the initial mixture. This may be explained by the low affinity of CH3I with water. Considering the concentration of CH3I used in the experiments, the aggregates are likely formed in the gas phase. The interaction between CH3I and H2O molecules studied for the first time experimentally and supported by DFT calculations highlights that, in the atmosphere, gaseous methyl iodine and water will likely form aggregates of water and CH3I polymers instead of (CH3I)m-(H2O)n hetero complexes. However, mixed CH3I:H2O complexes 1:1, 1:2 and 1:3 (see Figure) have been observed , whereas 2:1 and 2:2 complexes appear as minor species

    Infrared matrix- isolation and theoretical studies of interactions between CH3I and water

    No full text
    International audienceGaseous methyl iodine (CH3I) is naturally emitted in the atmosphere over oceans through the algae and phytoplankton activities. The fate of naturally emitted CH3I is of great interest because of the oxidizing properties of iodine and its impact on the catalytic destruction of the ozone layer. Additionally, CH3I is one of the gaseous species that can be produced in the case of severe nuclear accident, so, its radiological impact requires knowledge about its behavior in the atmosphere. Water is one of the major species in the atmosphere, which is responsible for atmospheric aerosol nucleation and cloud condensation nuclei. Water can also act as a reactive medium leading to secondary product formation. The study of the interaction between methyl iodine and water at the molecular scale is contributing for a better understanding of the fate of such halogen alkyl into the atmosphere. Here the micro-hydration of CH3I was investigated using cryogenic matrix experiments which were supported by theoretical DFT calculations. A large excess of water regarding CH3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH3I were observed despite the high water amount in the initial mixture. This may be explained by the low affinity of CH3I with water. Considering the concentration of CH3I used in the experiments, the aggregates are likely formed in the gas phase. The interaction between CH3I and H2O molecules studied for the first time experimentally and supported by DFT calculations highlights that, in the atmosphere, gaseous methyl iodine and water will likely form aggregates of water and CH3I polymers instead of (CH3I)m-(H2O)n hetero complexes. However, mixed CH3I:H2O complexes 1:1, 1:2 and 1:3 (see Figure) have been observed , whereas 2:1 and 2:2 complexes appear as minor species

    Infrared matrix- isolation and theoretical studies of interactions between CH3I and water

    No full text
    International audienceGaseous iodomethane are naturally emitted in the atmosphere over oceans through the algae and phytoplankton activities. The fate of naturally emitted iodomethane is of great interest because of the oxidizing properties of iodine in the atmosphere and its impact on the catalytic destruction of the ozone layer. Additionally, iodomethane is one of the gaseous species that can be emitted in the case of severe nuclear accident. The radiological impact of gaseous iodomethane is of concerns and requires knowledge about its behavior in the atmosphere. Water is one of the major species in the atmosphere which is responsible for atmospheric aerosol nucleation and thus, for cloud condensation nuclei (CCN). The fundamental knowledge concerning the interaction between methyl iodine and water at the molecular scale contributes to the better understanding of the fate of such species into the atmosphere and their role in CCN formation. Here the microhydration of iodomethane was investigated using cryogenic matrix experiments which were supported by theoretical DFT calculations. A large excess of water regarding CH3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH3I are observed despite the high water amount in the initial mixture together with hetero aggregates between CH3I and water clusters. This may be explained by the low affinity of CH3I with water. Considering the concentration of iodomethane used in our experiments, the aggregates are rather formed in gas phase and not in the matrix cage. The interaction between CH3I and H2O molecules studied experimentally and supported by DFT calculation highlights that, in the atmosphere, gaseous iodomethane and water will likely form association between water and iodomethane aggregates instead of (CH3I)n-(H2O)m hetero complexes. Our results have important consequences for the understanding of the alkyl halide solvation in primary processes and contribute to the understanding of reactive halogen species in tropospheric chemistry. In the context of a nuclear severe accident, our work is contributing to better understand the fate of nuclear species in the atmosphere and thus, the radionuclide dispersion
    corecore