6,418 research outputs found

    Zooplankton Gut Passage Mobilizes Lithogenic Iron for Ocean Productivity

    Get PDF
    Iron is an essential nutrient for phytoplankton, but low concentrations limit primary production and associated atmospheric carbon drawdown in large parts of the world’s oceans [1 and 2]. Lithogenic particles deriving from aeolian dust deposition, glacial runoff, or river discharges can form an important source if the attached iron becomes dissolved and therefore bioavailable [3, 4 and 5]. Acidic digestion by zooplankton is a potential mechanism for iron mobilization [6], but evidence is lacking. Here we show that Antarctic krill sampled near glacial outlets at the island of South Georgia (Southern Ocean) ingest large amounts of lithogenic particles and contain 3-fold higher iron concentrations in their muscle than specimens from offshore, which confirms mineral dissolution in their guts. About 90% of the lithogenic and biogenic iron ingested by krill is passed into their fecal pellets, which contain ∼5-fold higher proportions of labile (reactive) iron than intact diatoms. The mobilized iron can be released in dissolved form directly from krill or via multiple pathways involving microbes, other zooplankton, and krill predators. This can deliver substantial amounts of bioavailable iron and contribute to the fertilization of coastal waters and the ocean beyond. In line with our findings, phytoplankton blooms downstream of South Georgia are more intensive and longer lasting during years with high krill abundance on-shelf. Thus, krill crop phytoplankton but boost new production via their nutrient supply. Understanding and quantifying iron mobilization by zooplankton is essential to predict ocean productivity in a warming climate where lithogenic iron inputs from deserts, glaciers, and rivers are increasing [7, 8, 9 and 10]

    Partner Bereavement and Detection of Dementia: A UK-Based Cohort Study Using Routine Health Data

    Get PDF
    BACKGROUND: In the UK, an estimated one third of people with dementia have not received a diagnosis. Good evidence suggests that dementia risk is increased among widowed individuals; however, it is not clear if they are being diagnosed in routine primary care. // OBJECTIVE: This study aimed to investigate if bereavement influenced the probability of having received a dementia diagnosis. // METHODS: A population-based cohort study using UK electronic health records, between 1997 and 2017, among 247,586 opposite-sex partners. Those experiencing partner bereavement were matched (age, sex, and date of bereavement) to a non-bereaved person living in a partnership. Multivariate cox regression was performed. // RESULTS: Partner bereavement was associated with an increased risk of receiving a diagnosis of dementia in the first three months (hazard ratio (HR) 1.43, 95% CI 1.20-1.71) and first six months (HR 1.24, 95% CI 1.09-1.41), while there was a small reduced risk of getting a dementia diagnosis over all follow-up (HR 0.94, 95% CI 0.89-0.98). // CONCLUSIONS: Partner bereavement appears to lead to a short-term increased risk of the surviving partner receiving a diagnosis of dementia, suggesting that bereavement unmasks existing undiagnosed dementia. Over the longer term, however, bereaved individuals are less likely to have a diagnosis of dementia in their health records than non-bereaved individuals

    Comparative anatomical dimensions of the complete human and porcine spine

    Get PDF
    New spinal implants and surgical procedures are often tested pre-clinically on human cadaver spines. However, the availability of fresh frozen human cadaver material is very limited and alternative animal spines are more easily available in all desired age groups, and have more uniform geometrical and biomechanical properties. The porcine spine is said to be the most representative model for the human spine but a complete anatomical comparison is lacking. The goal of this descriptive study was to compare the anatomical dimensions of the cervical, thoracic, and lumbar vertebrae of the human and porcine spine in order to determine whether the porcine spine can be a representative model for the human spine. CT scans were made of 6 human and 6 porcine spines, and 16 anatomical dimensions were measured per individual vertebrae. Comparisons were made for the absolute values of the dimensions, for the patterns of the dimensions within four spinal regions, and normalised values of the dimensions within each individual vertebra. Similarities were found in vertebral body height, shape of the end-plates, shape of the spinal canal, and pedicle size. Furthermore, regional trends were comparable for all dimensions, except for spinal canal depth and spinous processus angle. The size of the end-plates increased more caudally in the human spine. Relating the dimensions to the size of the vertebral body, similarities were found in the size of the spinal canal, the transverse processus length, and size of the pedicles. Taking scaling differences into account, it is believed that the porcine spine can be a representative anatomical model for the human spine in specific research questions

    Spins go their own way

    Get PDF
    A semiconductor device that integrates electron spin injection, transport, modulation and detection in a single structure provides an important step in versatility for both fundamental research and practical spintronic applications

    Severe and predominantly active atopic eczema in adulthood and long term risk of cardiovascular disease: population based cohort study

    Get PDF
    OBJECTIVE: To investigate whether adults with atopic eczema are at an increased risk of cardiovascular disease and whether the risk varies by atopic eczema severity and condition activity over time. DESIGN: Population based matched cohort study. SETTING: UK electronic health records from the Clinical Practice Research Datalink, Hospital Episode Statistics, and data from the Office for National Statistics, 1998-2015. PARTICIPANTS: Adults with a diagnosis of atopic eczema, matched (on age, sex, general practice, and calendar time) to up to five patients without atopic eczema. MAIN OUTCOME MEASURES: Cardiovascular outcomes (myocardial infarction, unstable angina, heart failure, atrial fibrillation, stroke, and cardiovascular death). RESULTS: 387 439 patients with atopic eczema were matched to 1 528 477 patients without atopic eczema. The median age was 43 at cohort entry and 66% were female. Median follow-up was 5.1 years. Evidence of a 10% to 20% increased hazard for the non-fatal primary outcomes for patients with atopic eczema was found by using Cox regression stratified by matched set. There was a strong dose-response relation with severity of atopic eczema. Patients with severe atopic eczema had a 20% increase in the risk of stroke (hazard ratio 1.22, 99% confidence interval 1.01 to 1.48), 40% to 50% increase in the risk of myocardial infarction, unstable angina, atrial fibrillation, and cardiovascular death, and 70% increase in the risk of heart failure (hazard ratio 1.69, 99% confidence interval 1.38 to 2.06). Patients with the most active atopic eczema (active >50% of follow-up) were also at a greater risk of cardiovascular outcomes. Additional adjustment for cardiovascular risk factors as potential mediators partially attenuated the point estimates, though associations persisted for severe atopic eczema. CONCLUSIONS: Severe and predominantly active atopic eczema are associated with an increased risk of cardiovascular outcomes. Targeting cardiovascular disease prevention strategies among these patients should be considered

    On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model

    Get PDF
    During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer

    Sprouty2 mediated tuning of signalling is essential for somite myogenesis

    Get PDF
    Background: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis

    The effects of weather and climate change on dengue

    Get PDF
    There is much uncertainty about the future impact of climate change on vector-borne diseases. Such uncertainty reflects the difficulties in modelling the complex interactions between disease, climatic and socioeconomic determinants. We used a comprehensive panel dataset from Mexico covering 23 years of province-specific dengue reports across nine climatic regions to estimate the impact of weather on dengue, accounting for the effects of non-climatic factors
    • …
    corecore