34 research outputs found

    Surfzone-Beach-Dune interactions: Flow and Sediment Transport across the Intertidal Beach and Backshore

    Get PDF
    The original wave-beach-dune model stated that in the medium to long term, modal dissipative beaches display maximum onshore wave driven sediment transport, maximum aeolian transport off beaches, the largest foredune heights and volumes, and the largest Holocene dunefields. Modal reflective beaches display the opposite, while modal intermediate beaches display a trend in these from relatively high to relatively low sediment transport, foredune volumes, and Holocene barrier volumes with a trend from dissipative to reflective. New CFD modelling of flow and sediment transport over three modal beach types presented here shows that the original conceptual ideas and field data regarding aeolian sediment transport are correct. Dissipative beaches show the greatest long term potential for sediment delivery to the backshore whilst reflective beaches display the least, with a trend from relatively high to low in the intermediate beach state range

    Nebkha Flow Dynamics and Shadow Dune Formation

    Get PDF
    In this study, wind flow is simulated via CFD over five ‘nebkha’ dune forms that range in shape from a cone, to a hemisphere (approximately) and to a dome in order to examine the structure of the wake zone formed downwind and the effect on the leeward flow separation zone and shadow dune formation. Dune height was fixed at 0.5 m while the nebkha diameter increased in 0.25 m increments from 0.5 m to 1.5 m and aspect ratio (h/D) from 1.0 to 0.3. The mean flow comprises an upwind region of reduced velocity which expands as nebkha width increases, high velocity marginal wings, and paired counter-rotating reversing vortices leeward of the nebkha. The point at which flow separation occurs moves further downwind as the nebkha diameter increases. The core regions of the reversing vortices are situated further downwind behind the smaller nebkha than in the case of the larger nebkha. These factors in combination allow for higher velocity perturbations (TKE) and narrower wake behind the smaller nebkha, and the suppression of downwind wake development in the case of the increasingly larger nebkha. Shadow dune length increases as nebkha width increases for lower incident velocity flow and is barely affected by nebkha width at higher flows. The extent of the leeward separation or wake zone, and hence shadow dune length, more strongly varies as a function of wind velocity

    Jet flow over foredunes

    Get PDF
    Jet flows, which are localized flows exhibiting a high speed maxima, are relatively common in nature, and in many devices. They have only been occasionally observed on dunes, and their dynamics are poorly known. This paper examines computational fluid dynamic (CFD) two-dimensional (2D) modelling of jet flow over a foredune topography. Flow was simulated in 10° increments from onshore (0°) to highly oblique alongshore (70°) incident wind approach angles. CFD modelling reveals that the formation of a jet is not dependent on a critical wind speed, and an increase in incident wind velocity does not affect the magnitude of jet flow. A jet is first formed at ~1.0m seawards of the foredune crest on the Prince Edward Island foredune morphology example examined here. A jet is not developed when the incident wind is from an oblique approach angle greater than ~50° because there is significantly less flow acceleration across a much lower slope at this incident angle. The presence of a scarp does influence the structure of the crest jet, in that the jet is more pronounced where a scarp is present. Surface roughness affects the magnitude of jet expansion and jets are better developed on bare surfaces compared to vegetated ones

    Central Santa Catarina coastal dunefields chronology and their relation to relative sea level and climatic changes

    Get PDF
    During the past decades, there have been contrarian explanations for the formation and stabilization of coastal dunefields: while many authors believe the dunes formation would be enhanced by falling sea level, others argue that a rising or stable sea level context would be favorable. For Brazilian coastal dunefields, the second hypothesis seems to be more consistent with the luminescence ages found so far; however, most of these data were obtained without using the SAR protocol. Another point of concern is the role of climate change in the aeolian system, which is still not very clear. The aim of this paper is to try to clarify these two questions. To this end, five coastal dunefields were selected in central Santa Catarina coast. The remote sensing and dating results allowed the discrimination and mapping of at least four aeolian generations. Their age distribution in relation to the global curve of relative sea level variation during the Late Pleistocene allows us to suggest that the formation of Aeolian dunefields in the coastal context is supported by stable relative sea level. However, relative sea level is not the only determinant for the formation and preservation of the aeolian coastal dunes. Evidences of climatic control indicate that the initiation of dunefields would be favored by periods of less humidity while their stabilization would occur preferably during the periods of rain intensification, connected to monsoon activity

    A large mid-Holocene estuary was not present in the lower River Murray, Australia

    Get PDF
    Recent research has suggested that during the mid-Holocene (c. 8500 to 5000 cal yr BP) a large estuary occupied the lower River Murray and its terminal lakes (Lakes Alexandrina and Albert: herein the Lower Lakes) in South Australia. This research has questioned both reconstructions of past River Murray discharge and contemporary environmental water provisions aimed at maintaining the freshwater state of the Lower Lakes. We show that (1) a large mid-Holocene estuary extending into the lower River Murray was not physically possible, and (2) that the River Murray and Lower Lakes were predominantly fresh during the mid-Holocene. Sea level was well below present at the time of purported initiation of estuarine sedimentation and, therefore, could not have allowed formation of an estuary. Holocene human occupation of the lower River Murray valley, that was reliant on freshwater resources, negates the existence of a large estuary in the valley. A variety of freshwater indicators in sediments from in, and around, the Lower Lakes negate the notion of significant marine incursion. Hence, current management of the Lower Lakes as freshwater ecosystems is consistent with their Holocene history.J. Tibby, B. Bourman, C. Wilson, L. M. Mosley, A. P. Belperio, D. D. Ryan ... et al

    Long-term disturbance dynamics and resilience of tropical peat swamp forests

    Get PDF
    Summary 1.The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c. 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c. 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c. 500 years ago, these communities started to decline. 5. Synthesis. Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c. 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem.</p

    Ultrafast coherent spectroscopy

    Full text link

    Numerical Modelling of Turbulent Flow Structures in a Trough Blowout

    No full text
    Blowouts are erosional landforms often formed on coastal sand dunes by the deflation of sediment by wind flow. Quantitative observations of wind flow within blowouts aided by the deployment of smoke-bombs, have noted that temporal and spatial variations in sediment transport occur with the presence of turbulent flow structures. However because of the discrete nature of anemometry data, the presence of flow structures has been difficult to quantify and our understanding remains largely conceptual. This study presents a detailed investigation of turbulent flow structures within a trough blowout using high resolution, three-dimensional computational fluid dynamic modelling. We show that when incident wind flow was parallel to the blowout axis, only limited flow steering took place but a well-defined near surface jet developed along the deflation basin. Conversely when incident wind flow was oblique to the axis of the blowout wind flow became steered along the axis of the blowout but no near surface jet was produced. During neither incident wind direction were corkscrew or helicoidal vortices produced. Our study concludes that the incident wind flow direction is critical to the effectiveness of a trough blowout as a corridor for wind-blown sediment. While wind from a range of oblique angles may be steered along the axis of blowout, its relative effectiveness of eroding and transporting sediment beyond the deflation basin and erosional walls is much reduced compared to axis parallel wind flows of the same incident wind speed
    corecore