498 research outputs found

    Optically trapped bacteria pairs reveal discrete motile response to control aggregation upon cell–cell approach

    Get PDF
    Aggregation of bacteria plays a key role in the formation of many biofilms. The critical first step is cell–cell approach, and yet the ability of bacteria to control the likelihood of aggregation during this primary phase is unknown. Here, we use optical tweezers to measure the force between isolated Bacillus subtilis cells during approach. As we move the bacteria towards each other, cell motility (bacterial swimming) initiates the generation of repulsive forces at bacterial separations of ~3 μm. Moreover, the motile response displays spatial sensitivity with greater cell–cell repulsion evident as inter-bacterial distances decrease. To examine the environmental influence on the inter-bacterial forces, we perform the experiment with bacteria suspended in Tryptic Soy Broth, NaCl solution and deionised water. Our experiments demonstrate that repulsive forces are strongest in systems that inhibit biofilm formation (Tryptic Soy Broth), while attractive forces are weak and rare, even in systems where biofilms develop (NaCl solution). These results reveal that bacteria are able to control the likelihood of aggregation during the approach phase through a discretely modulated motile response. Clearly, the force-generating motility we observe during approach promotes biofilm prevention, rather than biofilm formation

    Numerical simulation of biofilm formation in a microchannel

    Full text link
    The focus of this paper is the numerical solution of a pore-scale model for the growth of a permeable biofilm. The model includes water flux inside the biofilm, different biofilm components, and shear stress on the biofilm-water interface. To solve the resulting highly coupled system of model equations, we propose a splitting algorithm. The Arbitrary Lagrangian Eulerian (ALE) method is used to track the biofilm-water interface. Numerical simulations are performed using physical parameters from the existing literature. Our computations show the effect of biofilm permeability on the nutrient transport and on its growth

    Pre-elimination stage of malaria in Sri Lanka: assessing the level of hidden parasites in the population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the dramatic drop in the transmission of malaria in Sri Lanka in recent years, the country entered the malaria pre-elimination stage in 2008. Assessing the community prevalence of hidden malaria parasites following several years of extremely low transmission is central to the process of complete elimination. The existence of a parasite reservoir in a population free from clinical manifestations, would influence the strategy for surveillance and control towards complete elimination.</p> <p>Methods</p> <p>The prevalence of hidden parasite reservoirs in two historically malaria endemic districts, Anuradhapura and Kurunegala, previously considered as high malaria transmission areas in Sri Lanka, where peaks of transmission follow the rainy seasons was assessed. Blood samples of non-febrile individuals aged five to 55 years were collected from randomly selected areas in the two districts at community level and a questionnaire was used to collect demographic information and movement of the participants. A simple, highly sensitive nested PCR was carried out to detect both <it>Plasmodium falciparum </it>and <it>Plasmodium vivax</it>, simultaneously.</p> <p>Results</p> <p>In total, 3,023 individuals from 101 villages participated from both districts comprising mostly adults between the ages 19-55 years. Out of these, only about 1.4% of them (n = 19) could recall having had malaria during the past five years. Analysis of a subset of samples (n = 1322) from the two districts using PCR showed that none of the participants had hidden parasites.</p> <p>Discussion</p> <p>A reservoir of hidden parasites is unlikely to be a major concern or a barrier to the ongoing malaria elimination efforts in Sri Lanka. However, as very low numbers of indigenous cases are still recorded, an island-wide assessment and in particular, continued alertness and follow up action are still needed. The findings of this study indicate that any future assessments should be based on an adaptive sampling approach, involving prompt sampling of all subjects within a specified radius, whenever a malaria case is identified in a given focus.</p

    Verticalization of bacterial biofilms

    Full text link
    Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15 figure

    Variability of RNA quality extracted from biofilms of foodborne pathogens using different kits impacts mRNA quantification by qPCR

    Get PDF
    The biofilm formation by foodborne pathogens is known to increase the problem related with surface disinfection procedure in the food processing environment and consequent transmission of these pathogens into the population. Messenger RNA has been increasingly used to understand the action and the consequences of disinfectants in the virulence on such biofilms. RNA quality is an important requirement for any RNA-based analysis since the quality can impair the mRNA quantification. Therefore, we evaluated five different RNA extraction kits using biofilms of the foodborne pathogens Listeria monocytogenes, Escherichia coli, and Salmonella enterica. The five kits yielded RNA with different quantities and qualities. While for E. coli the variability of RNA quality did not affect the quantification of mRNA, the same was not true for L. monocytogenes or S. enterica. Therefore, our results indicate that not all kits are suitable for RNA extraction from bacterial biofilms, and thus, the selection of RNA extraction kit is crucial to obtain accurate and meaningful mRNA quantification.AF and JCB acknowledge the financial support of individual grants SFRH/BD/62359/2009 and SFRH/BD/66250/2009, respectively. The authors acknowledge the gift of bacterial strains to Joana Azeredo and Maria Olivia Pereira.

    How Do Bacteria Know They Are on a Surface and Regulate Their Response to an Adhering State?

    Get PDF
    Bacteria adhere to virtually all natural and synthetic surfaces [1,2]. Although there are a number of different reasons as to why bacteria adhere to a surface, the summarizing answer is brief: ‘‘Adhesion to a surface is a survival mechanism for bacteria’’. Nutrients in aqueous environments have the tendency to accumulate at surfaces [1,3], giving adhering bacteria a benefit over free floating, so-called planktonic ones. This is why mountain creeks may contain crystal clear, drinkable water, while stepping stones underneath the water may be covered with a slippery film of adhering microbes. In the oral cavity, adhesion to dental hard and soft tissues is life-saving to the organisms, because microbes that do not manage to adhere and remain planktonic in saliva are swallowed with an almost certain death in the gastrointestinal tract. Bacterial adhesion is generally recognized as the first step in biofilm formation, and for the human host, the ability of

    BiofOmics: A Web Platform for the Systematic and Standardized Collection of High-Throughput Biofilm Data

    Get PDF
    Background: Consortia of microorganisms, commonly known as biofilms, are attracting much attention from the scientific community due to their impact in human activity. As biofilm research grows to be a data-intensive discipline, the need for suitable bioinformatics approaches becomes compelling to manage and validate individual experiments, and also execute inter-laboratory large-scale comparisons. However, biofilm data is widespread across ad hoc, non-standardized individual files and, thus, data interchange among researchers, or any attempt of cross-laboratory experimentation or analysis, is hardly possible or even attempted. Methodology/Principal findings This paper presents BiofOmics, the first publicly accessible Web platform specialized in the management and analysis of data derived from biofilm high-throughput studies. The aim is to promote data interchange across laboratories, implementing collaborative experiments, and enable the development of bioinformatics tools in support of the processing and analysis of the increasing volumes of experimental biofilm data that are being generated. BiofOmics data deposition facility enforces data structuring and standardization, supported by controlled vocabulary. Researchers are responsible for the description of the experiments, their results and conclusions. BiofOmics curators interact with submitters only to enforce data structuring and the use of controlled vocabulary. Then, BiofOmics search facility makes publicly available the profile and data associated with a submitted study so that any researcher can profit from these standardization efforts to compare similar studies, generate new hypotheses to be tested or even extend the conditions experimented in the study. Significance BiofOmics novelty lays on its support to standardized data deposition, the availability of computerizable data files and the free-of-charge dissemination of biofilm studies across the community. Hopefully, this will open promising research possibilities, namely: the comparison of results between different laboratories, the reproducibility of methods within and between laboratories, and the development of guidelines and standardized protocols for biofilm formation devices and analytical methods.The financial support from the Institute of Biotechnology and Bioengineering - Center of Biological Engineering (IBB-CEB), Fundacao para a Ciencia e Tecnologia (FCT) and European Community fund FEDER (Program COMPETE), project PTDC/SAU-ESA/646091/2006/FCOMP-01-0124-FEDER-007480 and PhD grant of Idalina Machado (SFRH/BD/31065/2006) are gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Pseudotumoral tracheobronchial amyloidosis mimicking asthma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Tracheobronchial amyloidosis is an uncommon localized form of amyloidosis that can simulate a tracheal tumor. Clinical signs are not specific and the diagnosis is rarely given before performing a bronchoscopy with multiples biopsies.</p> <p>Case presentation</p> <p>We report the case of a 60-year-old Moroccan woman, complaining of dyspnea and wheezing for three years, who was treated at our institution for management of severe asthma. A bronchoscopy revealed a tumor formation of her trachea; multiples biopsies were performed and a diagnosis made of amyloid light-chain amyloidosis. She successfully received an endoscopic resection.</p> <p>Conclusion</p> <p>This case highlights the importance of routinely carrying out an endoscopy in any patient complaining of atypical bronchial symptoms or with uncontrolled asthma. Tracheal amyloidosis is a rare disease, confirmed by histological examination of bronchial biopsies, and the treatment of choice is based on the bronchoscopic resection.</p

    Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms

    Get PDF
    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.National Institute of Dental & Craniofacial ResearchFundação para a Ciência e Tecnologia (FCT) - SFRH/BD/28222/2006National Institute of Allergy and Infectious Disease

    Critical review on biofilm methods

    Get PDF
    Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.The authors would like to acknowledge the support from the EU COST Action BacFoodNet FA1202
    corecore