45 research outputs found

    Five Nuclear Loci Resolve the Polyploid History of Switchgrass (Panicum virgatum L.) and Relatives

    Get PDF
    Polyploidy poses challenges for phylogenetic reconstruction because of the need to identify and distinguish between homoeologous loci. This can be addressed by use of low copy nuclear markers. Panicum s.s. is a genus of about 100 species in the grass tribe Paniceae, subfamily Panicoideae, and is divided into five sections. Many of the species are known to be polyploids. The most well-known of the Panicum polyploids are switchgrass (Panicum virgatum) and common or Proso millet (P. miliaceum). Switchgrass is in section Virgata, along with P. tricholaenoides, P. amarum, and P. amarulum, whereas P. miliaceum is in sect. Panicum. We have generated sequence data from five low copy nuclear loci and two chloroplast loci and have clarified the origin of P. virgatum. We find that all members of sects. Virgata and Urvilleana are the result of diversification after a single allopolyploidy event. The closest diploid relatives of switchgrass are in sect. Rudgeana, native to Central and South America. Within sections Virgata and Urvilleana, P. tricholaenoides is sister to the remaining species. Panicum racemosum and P. urvilleanum form a clade, which may be sister to P. chloroleucum. Panicum amarum, P. amarulum, and the lowland and upland ecotypes of P. virgatum together form a clade, within which relationships are complex. Hexaploid and octoploid plants are likely allopolyploids, with P. amarum and P. amarulum sharing genomes with P. virgatum. Octoploid P. virgatum plants are formed via hybridization between disparate tetraploids. We show that polyploidy precedes diversification in a complex set of polyploids; our data thus suggest that polyploidy could provide the raw material for diversification. In addition, we show two rounds of allopolyploidization in the ancestry of switchgrass, and identify additional species that may be part of its broader gene pool. This may be relevant for development of the crop for biofuels

    Taxonomic biodiversity of geniculate coralline red algae (Corallinales, Rhodophyta) from the Macaronesian region: summary and analysis

    Full text link

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Ichthyofauna associated with Cymodocea nodosa meadows in the Canarian Archipelago (central eastern Atlantic): Community structure and nursery role

    No full text
    We carried out 84 trawls in 41 seagrass meadows composed of the phanerogam Cymodocea nodosa at three islands of the Canarian Archipelago, during June to September 2003, in order to describe the associated ichthyofauna (composition, richness, and abundance), to analyze the role that this habitat can play in fish recruitment, and to determine the potential relationship between the spatial structure of the seagrass meadow and the patterns of richness and abundance of the fish assemblage. A total of 8298 individuals were captured. The five most relevant species, in terms of abundance and frequency, were Spondyliosoma cantharus, Diplodus annularis, Syngnathus typhle, Mullus surmuletus, and Pagellus erythrinus. Gran Canaria had the largest species richness (36 species) and mean number of species per sample (8.69 ± 0.49; mean ± SE). Lanzarote had the largest number of individuals (64.83% of the total registered) and mean total abundance per sample (168.39 ± 30.91). High densities of individuals were registered (95.86 ± 13.5) and 92.91% of fishes were juveniles. Our data showed that the physical configuration of the seagrass meadows did not significantly affect the patterns of richness and abundance of the associated fish assemblage. In conclusion, the C. nodosa meadows exhibited a singular ichthyofauna and they contribute to the maintenance of the diversity of the coastal fish assemblages in the Canarian Archipelago. This habitat constitutes, during spring and summer, a nursery habitat for juvenile fishes of many species, several of them commercially targeted.

    Within-island differentiation and between-island homogeneity: Non-equilibrium population structure in the seaweed Cladophoropsis membranacea (Chlorophyta) in the Canary Islands

    No full text
    The seaweed Cladophoropsis membranacea forms extensive mats of coalesced thalli on coral reefs and along rocky coastlines throughout the tropics and subtropics. In a previous study on Gran Canaria, small-scale dispersal distances were found to be limited to <5 m and significant differentiation (F-ST) was detectable at distances as small as 5 km. Such strong, small-scale differentiation led to the prediction that strong isolation by distance (IBD) would be found under a stepping stone model at larger spatial scales. In the present survey, 23 sites were sampled in the Canary Islands and one in the Cape Verde Islands. Using eight microsatellite loci analysed in an AMOVA framework, we determined that approximately 75% of the variation occurred within sites and approximately 25% between sites separated by 1-125 km. In a three-level AMOVA, only 6% of the variation was accounted for between islands (&AP; 100-300 km). Moderately strong IBD was found within islands and Mantel tests revealed significant correlation for Gran Canaria and Tenerife but not for Fuerteventura. In contrast, there was no detectable IBD among the Canary Islands regardless of how geographic distances were computed. Only when the Canary Islands were compared with the Cape Verde Islands was strong IBD detected. Our seemingly paradoxical results of strong differentiation and IBD at small distances and weak to absent IBD at large distances reflect non-equilibrium conditions. In addition, the wide scatter of points we observed over all degrees of geographic separation is consistent with isolation in which drift dominates over gene flow. The lack of equilibrium in present-day populations of C. membranacea is probably mainly due to the fact that they are only thousands or even hundreds of years old. Therefore, population structure should be interpreted in terms of history rather than gene flow
    corecore