4,786 research outputs found

    Evaluation of the effectiveness of the national Prevention of Mother-to-Child Transmission (PMTCT) programme on infant HIV measured at six weeks postpartum in South Africa

    Get PDF
    Aims and Objectives: The overall aim of this evaluation was to conduct a national facility-based survey to monitor the effectiveness of the South African National PMTCT programme. The primary objective was to measure rates of early MTCT of HIV at six weeks postpartum. The secondary objective was to periodically estimate coverage of key PMTCT interventions and services (e.g., HIV testing, CD4 cell count testing, infant antiretroviral (ARV) prophylaxis, infant feeding counselling).South African Medical Research Council, National Department of Health South Africa and PEPFAR/US Centers for Disease Control & Prevention, UNICE

    Building solids inside nano-space: from confined amorphous through confined solvate to confined ‘metastable’ polymorph

    Get PDF
    The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate – ROY (259.3 g mol1). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical – indomethacin (IMC, 357.8 g mol1), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids

    Design Principles for Plasmonic Nanoparticle Devices

    Get PDF
    For all applications of plasmonics to technology it is required to tailor the resonance to the optical system in question. This chapter gives an understanding of the design considerations for nanoparticles needed to tune the resonance. First the basic concepts of plasmonics are reviewed with a focus on the physics of nanoparticles. An introduction to the finite element method is given with emphasis on the suitability of the method to nanoplasmonic device simulation. The effects of nanoparticle shape on the spectral position and lineshape of the plasmonic resonance are discussed including retardation and surface curvature effects. The most technologically important plasmonic materials are assessed for device applicability and the importance of substrates in light scattering is explained. Finally the application of plasmonic nanoparticles to photovoltaic devices is discussed.Comment: 29 pages, 15 figures, part of an edited book: "Linear and Non-Linear Nanoplasmonics

    Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean

    Get PDF
    Subsurface chlorophyll maximum (SCM) layers are prevalent throughout the Arctic Ocean under stratified conditions and are observed both in the wake of retreating sea ice and in thermally stratified waters. The importance of these layers on the overall productivity of Arctic pelagic ecosystems has been a source of debate. In this study, we consider the three principal factors that govern productivity within SCMs: the shape of the chlorophyll profile, the photophysiological characteristics of phytoplankton and the availability of light in the layer. Using the information on the biological and optical parameters describing the vertical structure of chlorophyll, phytoplankton absorption and photosynthesis–irradiance response curves, a spectrally resolved model of primary production is used to identify the set of conditions under which SCMs are important contributors to water-column productivity. Sensitivity analysis revealed systematic errors in the estimation of primary production when the vertical distribution of chlorophyll was not taken into account, with estimates of water-column production using a non-uniform profile being up to 97% higher than those computed using a uniform one. The relative errors were shown to be functions of the parameters describing the shape of the biomass profile and the light available at the SCM to support photosynthesis. Given that SCM productivity is believed to be largely supported by new nutrients, it is likely that the relative contribution of SCMs to new production would be significantly higher than that to gross primary production. We discuss the biogeochemical and ecological implications of these findings and the potential role of new ocean sensors and autonomous underwater vehicles in furthering the study of SCMs in such highly heterogeneous and remote marine ecosystems. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'

    Molecular structures and vibrations of neutral and anionic CuOx (x = 1-3,6) clusters

    Full text link
    We report equilibrium geometric structures of CuO2, CuO3, CuO6, and CuO clusters obtained by an all-electron linear combination of atomic orbitals scheme within the density-functional theory with generalized gradient approximation to describe the exchange-correlation effects. The vibrational stability of all clusters is examined on the basis of the vibrational frequencies. A structure with Cs symmetry is found to be the lowest-energy structure for CuO2, while a -shaped structure with C2v symmetry is the most stable structure for CuO3. For the larger CuO6 and CuO clusters, several competitive structures exist with structures containing ozonide units being higher in energy than those with O2 units. The infrared and Raman spectra are calculated for the stable optimal geometries. ~Comment: Uses Revtex4, (Better quality figures can be obtained from authors

    Charge Fluctuations on Membrane Surfaces in Water

    Full text link
    We generalize the predictions for attractions between over-all neutral surfaces induced by charge fluctuations/correlations to non-uniform systems that include dielectric discontinuities, as is the case for mixed charged lipid membranes in an aqueous solution. We show that the induced interactions depend in a non-trivial way on the dielectric constants of membrane and water and show different scaling with distance depending on these properties. The generality of the calculations also allows us to predict under which dielectric conditions the interaction will change sign and become repulsive

    Images and images: Current roles of therapeutic radiographers.

    Get PDF
    INTRODUCTION: Therapeutic radiography is a small profession and has adapted in response to advanced techniques. An increase in on-line adaptive MRI-guided radiotherapy (MRIgRT) will require role extension for therapeutic radiographers (TRs). This study will investigate the current role description for TRs and the activities they currently undertake with regards to MRIgRT. METHOD: A training needs analysis was used to ask TRs about their current roles and responsibilities and essential skills required for MRIgRT. For the purposes of this paper, the authors present the results from the demographics of the individual, their current job title with roles and responsibilities, and experience with decision making and image assessment. Descriptive statistics was used to analyse the data. RESULTS: 261 responses were received (n = 261). Only 28% of job titles listed contained the protected title of 'therapeutic radiographer'. Advanced clinical practice roles were expressed by participants indicating that if a service need is presented, emerging roles will be created. Variation existed across the standardised roles of TRs and this discrepancy could present challenges when training for MRIgRT. TRs are pivotal in image verification and recognition on a standard linac, and skills developed there can be transferred to MRIgRT. Decision making is crucial for adaptive techniques and there are many skills within their current scope of practice that are indispensable for the MRIgRT. CONCLUSION: It has been demonstrated that TRs have a range of roles that cover vast areas of the oncology pathway and so it is important that TRs are recognised so the pivotal role they play is understood by all. TRs have extensive soft-tissue IGRT knowledge and experience, aiding the evolution of decision-making skills and application of off-protocol judgments, the basis of MRIgRT. IMPLICATIONS FOR PRACTICE: Role development and changes in education for therapeutic radiographers

    Escaping the oligotrophic gyre? The year-round movements, foraging behaviour and habitat preferences of Murphy’s petrels

    Get PDF
    The South Pacific Gyre is the world’s largest expanse of oligotrophic ocean and supports communities of endemic gadfly petrels Pterodroma spp, yet little is known about their foraging ecology in this nutrient-poor environment. We tracked Murphy’s petrels Pterodroma ultima with geolocators from Henderson Island, Pitcairn Islands, for two consecutive years (2011 - 2013). During pre-laying exodus, petrels travelled south and southwest of the colony, with males travelling further than females to more productive waters. During incubation, birds foraged at the southern and eastern edges of the Gyre, with some travelling over 4,800 km from the colony, the greatest recorded foraging range of any breeding seabird. During non-breeding, the petrels migrated to the Subarctic Gyre in the North Pacific to forage in cool, mesotrophic waters. Habitat models revealed that birds do not have clear preferences for oceanographic (such as fronts or eddies) or topographic features (seamounts), generally favouring deep and unproductive waters. Analyses of activity patterns indicated Murphy’s petrels are amongst the most active of all seabirds, particularly during incubation when they spent c.95% of their time at sea in flight. The birds did not appear to forage during darkness, but flight activity peaked at dawn, particularly during non-breeding, suggesting they feed on mesopelagic prey that are diel vertical migrants. At-sea protection for such a wide-ranging species would require management at huge spatial scales, and hence in the short term, the principal focus for conservation should be on eliminating the immediate threat from invasive mammals at breeding sites.T.A.C. was supported by a studentship funded as part of the Natural Environment Research Council (NERC) Standard Grant NE/J021083/1. This study represents a contribution to the Ecosystems component of the British Antarctic Survey Polar Science for Planet Earth Programme, funded by NERC

    Some Variations on Maxwell's Equations

    Get PDF
    In the first sections of this article, we discuss two variations on Maxwell's equations that have been introduced in earlier work--a class of nonlinear Maxwell theories with well-defined Galilean limits (and correspondingly generalized Yang-Mills equations), and a linear modification motivated by the coupling of the electromagnetic potential with a certain nonlinear Schroedinger equation. In the final section, revisiting an old idea of Lorentz, we write Maxwell's equations for a theory in which the electrostatic force of repulsion between like charges differs fundamentally in magnitude from the electrostatic force of attraction between unlike charges. We elaborate on Lorentz' description by means of electric and magnetic field strengths, whose governing equations separate into two fully relativistic Maxwell systems--one describing ordinary electromagnetism, and the other describing a universally attractive or repulsive long-range force. If such a force cannot be ruled out {\it a priori} by known physical principles, its magnitude should be determined or bounded experimentally. Were it to exist, interesting possibilities go beyond Lorentz' early conjecture of a relation to (Newtonian) gravity.Comment: 26 pages, submitted to a volume in preparation to honor Gerard Emch v. 2: discussion revised, factors of 4\pi corrected in some equation

    A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b

    Get PDF
    Exoplanets orbiting close to their parent stars could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to suggest that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start ~2 h before, and end >3 h after the ~1 h optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of ~10^8-10^9 g/s, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.Comment: Published in Nature on 25 June 2015. Preprint is 28 pages, 12 figures, 2 table
    • 

    corecore