34,215 research outputs found
A nonlinear analysis for sloshing forces and moments on a cylindrical tank
Sloshing forces and moments on cylindrical tank - integration of nonlinear force equation
Biological effects of prolonged expoure of small animals to unusual gaseous environments semiannual report, 1 sep. 1964 - 28 feb. 1965
Biological effect of prolonged exposure of man and small animals to pure oxygen and helium - oxygen environmen
Results of the 1980 NASA/JPL balloon flight solar cell calibration program
Thirty-eight modules were carried to an altitude of about 36 kilometers. In addition to the cell calibration program, an experiment to evaluate the calibration error versus altitude was performed. The calibrated cells can be used as reference standards in simulator testing of cells and arrays
An approximate nonlinear analysis of the stability of sloshing modes under transla- tional and rotational excitation
Nonlinear analysis of sloshing mode stability under translational and rotational excitatio
Results of the 1979 NASA/JPL balloon flight solar cell calibration program
Calibration of solar cells to be used as reference standards in simulator testing of cells and arrays was accomplished. Thirty-eight modules were carried to an altitude of about 36 kilometers during the solar cell calibration balloon flight
Results of the 1981 NASA/JPL balloon flight solar cell calibration program
The calibration of the direct conversion of solar energy through use of solar cells at high altitudes by balloon flight is reported. Twenty seven modules were carried to an altitude of 35.4 kilometers. Silicon cells are stable for long periods of time and can be used as standards. It is demonstrated that the cell mounting cavity may be either black or white with equal validity in setting solar simulators. The calibrated cells can be used as reference standards in simulator testing of cells and arrays
Classical small systems coupled to finite baths
We have studied the properties of a classical -body system coupled to a
bath containing -body harmonic oscillators, employing an model
which is different from most of the existing models with . We have
performed simulations for -oscillator systems, solving
first-order differential equations with and , in order to calculate the time-dependent energy exchange between the
system and the bath. The calculated energy in the system rapidly changes while
its envelope has a much slower time dependence. Detailed calculations of the
stationary energy distribution of the system (: an energy per
particle in the system) have shown that its properties are mainly determined by
but weakly depend on . The calculated is analyzed with the
use of the and - distributions: the latter is derived with
the superstatistical approach (SSA) and microcanonical approach (MCA) to the
nonextensive statistics, where stands for the entropic index. Based on
analyses of our simulation results, a critical comparison is made between the
SSA and MCA. Simulations have been performed also for the -body ideal-gas
system. The effect of the coupling between oscillators in the bath has been
examined by additional () models which include baths consisting of
coupled linear chains with periodic and fixed-end boundary conditions.Comment: 30 pages, 16 figures; the final version accepted in Phys. Rev.
A synthetic Escherichia coli predator–prey ecosystem
We have constructed a synthetic ecosystem consisting of two Escherichia coli populations, which communicate bi-directionally through quorum sensing and regulate each other's gene expression and survival via engineered gene circuits. Our synthetic ecosystem resembles canonical predator–prey systems in terms of logic and dynamics. The predator cells kill the prey by inducing expression of a killer protein in the prey, while the prey rescue the predators by eliciting expression of an antidote protein in the predator. Extinction, coexistence and oscillatory dynamics of the predator and prey populations are possible depending on the operating conditions as experimentally validated by long-term culturing of the system in microchemostats. A simple mathematical model is developed to capture these system dynamics. Coherent interplay between experiments and mathematical analysis enables exploration of the dynamics of interacting populations in a predictable manner
Nakajima-Zwanzig versus time-convolutionless master equation for the non-Markovian dynamics of a two-level system
We consider the exact reduced dynamics of a two-level system coupled to a
bosonic reservoir, further obtaining the exact time-convolutionless and
Nakajima-Zwanzig non-Markovian equations of motion. The considered system
includes the damped and undamped Jaynes-Cummings model. The result is obtained
by exploiting an expression of quantum maps in terms of matrices and a simple
relation between the time evolution map and time-convolutionless generator as
well as Nakajima-Zwanzig memory kernel. This non-perturbative treatment shows
that each operator contribution in Lindblad form appearing in the exact
time-convolutionless master equation is multiplied by a different time
dependent function. Similarly, in the Nakajima-Zwanzig master equation each
such contribution is convoluted with a different memory kernel. It appears that
depending on the state of the environment the operator structures of the two
set of equations of motion can exhibit important differences.Comment: 12 pages, no figure
- …