ΝΟΤΙΟΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Results of the 1981 NASA/JPL Balloon Flight Solar Cell Calibration Program

C.H. Seaman R.S. Weiss

(NASA-CR-168442)RESULTS OF THE 1981N82-17610NASA/JPL BALLCON FLIGHT SCLAR CELLCALIBRATION PROGRAM (Jet Fropulsion Lat.)016 p HC A02/MF A01CSCL 10AUnclasG3/44G8903C3/44

January 15, 1982

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Results of the 1981 NASA/JPL Balloon Flight Solar Cell Calibration Program

C.H. Seaman R.S. Weiss

January 15, 1982

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

È.

PREFACE

The work described in this report was performed by the Control and Energy Conversion Division of the Jet Propulsion Laboratory. The flight was conducted with the cooperation of the National Scientific Balloon Facility, located in Palestine, Texas.

ABSTRACT

After an aborted launch on July 23 due to balloon failure during inflation, the 1981 solar cell calibration balloon flight was successfully completed on July 25, meeting all objectives of the program. Twenty-seven modules were carried to an altitude of 35.4 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

ACKNOWLEDGMENT

The authors wish to extend appreciation for the cooperation and support provided by the entire staff of the National Scientific Balloon Facility. Gratitude is also extended to assisting JPL personnel, especially B. E. Anspaugh, for providing cell spectral response information and data reduction assistance. The cooperation and patience extended by all participating organizations are greatly appreciated.

CONTENTS

I.	INTRODUCTION	1
11.	PROCEDURE	1
111.	SYSTEM DESCRIPTION	2
IV.	DATA REDUCTION	2
V.	FILTERED CELLS	6
VI.	MODULE CAVITY SURFACE FINISH	6
VII.	MONITOR CELLS	9
VIII.	CONCLUSIONS	9
REFERE	NCES	9

Tables

1.	Cell Calibration Data	5
2.	White-Black Ratio Versus Source	8
3.	Repeatability of Standard Solar Cell BFS-17A	10

Figures

ł

1.	1981 Solar Module Payload	3
2.	Balloon Mount	3
3.	Flight 1981 Altitude Versus Time	4
4.	1981 Module Location Chart	6
5.	Black and White Cavity Modules	8

-

SECTION I

INTRODUCTION

The primary source of electrical power for unmanned space vehicles is the direct conversion of solar energy through the use of solar cells. As advancing cell technology continues to modify the spectral response of solar cells to utilize more of the sun's spectrum, designers of solar array: must have information detailing the impact of these modifications on cell conversion efficiency to be able to confidently minimize the active cell area required and, hence, the mass of the array structure.

Since laboratory simulation of extra-atmospheric solar radiation has not been accomplished on a practical scale with sufficient fidelity, high altitude exposure must be taken as the best representation of space itself. While a theoretical prediction (Reference 1) and experimental evidence have suggested that an altitude greater than 30 kilometers is sufficient to give space equivalent calibration, the final decision as to an adequate altitude must await the results of the space shuttle solar cell calibration experiment scheduled for December 1982.

To reach and maintain the chosen altitude of 36 kilometers, the calibration program makes use of balloons provided and launched by the National Scientific Balloon Facility, Palestine, Texas.

SECTION II

PROCEDURE

To insure electrical and mechanical compatibility with other components of the flight system, the cells are mounted by the participants on JPL-supplied standard modules according to directions in Reference 2, which details materials, techniques, and workmanship standards for assembly. The JPL standard module is a machined copper block 3.7 cm x 4.8 cm x 0.3 cm thick, rimmed by $0.3 \text{ cm thick fiberglass, painted a high reflectance white, with insulated$ solder posts and is permanently provided with a precision (0.1 percent, 20ppm/°C) load resistor appropriate for scaling the cell output to the telemetry constraints. This load resistor, 0.5 ohm for a 2 cm x 2 cm cell, forexample, also loads the cell in its short circuit current condition.

The mounted cells are then subjected to preflight measurements in the JPL X25L solar simulator. This measurement, when compared to a postflight measurement under the same conditions, may be used to detect cell damage or instabilities.

Prior to shipment to the launch facility, the modules are mounted on the sun tracker bed plate (Figure 1).

Upon arrival at the Palestine Facility, the tracker and module payload are checked for proper operation, the data acquisition and Pulse Code Modulation telemetry systems are calibrated. Mounting of the assembly onto the balloon is then accomplished (Figure 2).

At operating altitude the sun tracker bed plate is held pointed at the sun to within ± 1 deg. The response of each module, temperatures of representative modules, sun lock information, and system calibration voltages are sampled twice each second and telemetered to the ground station where they are presented in teletype form for real-time assessment and are also recorded on magnetic tape for later processing. Float altitude information is obtained from data supplied by the balloon facility. A plot of altitude in kilometers versus Central Daylight Time for the 1981 flight is shown in Figure 3.

SECTION III

SYSTEM DESCRIPTION

A solar tracker mounted in a frame on top of the balloon carries the module payload, while the transmitter of the data link is located in the lower gondola along with batteries for power and ballast for balloon control. At completion of the experiment, the upper payload and lower gondola are returned by parachutes and recovered. A more complete description of the system, including the sun tracker, can be found in Reference 3.

SECTION IV

DATA REDUCTION

The raw data as taken from the magnetic tape is corrected for temperature and sun-Earth distance according to the formula (Reference 4):

$$v_{28,1} = v_{T,R}(R^2) - \alpha(T-28)$$

where

$$V_{T,R}$$
 = measured module output voltage at temperature T and distance R

- R = sun-Earth distance in astronomical units
- α = module output temperature coefficient (supplied by participant)
- T = module temperature in °C

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 1. 1981 Solar Module Payload

Figure 2. Balloon Mount

Figure 3. Flight 1981 Altitude Versus Time

The calibration value is taken to be the average of 200 consecutive data points taken around the time of solar noon after indicated temperature stability.

The flight data were thus reduced, and modules with their data and calibration values were returned to the participants. This information is collected in Table 1. The placement of modules on the field of the tracker bed for the 1981 flight is shown in Figure 4.

A detailed discussion of data reduction and an analysis of system error may be found in Reference 3.

The error in the calibration values due to radiation absorption and scattering by the residual atmosphere at float altitude is estimated to be less than 0.2 percent (Reference 1).

ADIC IN VOIL DUILDIGEIVII DUCU	Table 1	1.	Cell	Calibr	ation	Data
--------------------------------	---------	----	------	--------	-------	------

STANDARD DEVIATION	AMD+ \$01 1 AU+ 2 PHE-FLT	LAN SIN. 28 DEG.C	COMPARISO	IN+SOLAR	COMMENT
	PHE-FLT	ES DEG.C			
	- WI OF LI		BAR_RLY	TIN TLT	
		FUSEFL	THEFE!		
			POS-FL T		
			(PERCENT)	(PERCENT))
.075	84.80	84.10	•. •3	.93	KT AL BORNU
.05502	69.70	69.30	57	1.46	N7
.07499	83,50	\$3.60	-12	1.70	BLK-01
.08473	84.00	85,50	5A	1.24	KT BH BGRND
.08223	74.40	76.40	.00	5.26	K4 3/A
.08455	78,40	77.00	-2.41	-1.41	##.063 6#6CH
.05#78	6R.70	48.70	.00	-1.22	
.08125	76.70	76.80	.13	.32	#2F=02
.07914	22,40	22.70		21.32	SOONMNP REA
.06414	74,40	76.60	.2.	.17	##F+03
.07710	76,20	75.00	-1.57	46	. KG 374 A 8G
.04172	6A.40	47. 60	.29		
.06234	74.20	78.20	+1.24	.54	H8.043 649CH
<u>*</u> 0707 4	87.40	87.50	+11	2.97	
.06961	73,40	73,40	.00	.1.	88#=02
.04584	77.00	76.80	2+	.72	R4 3/4 # 86
.07100	50.40	20.90	.00	7.04	1000NHNP REA
.06407	73.40	73.80	•.14	+.25	#1#=03
.04107	60,50	60.50	.00	+.71	MONITOP
.04744	74.80	78,80	.00	.24	878/8+02
.06601	25.00	27.20	-1.77	2.45	350-750NRMP
	72.10	72.20	+14	.34	NO 68F
.08442	74,00	74.00			
.03010		67.70	.00		~ •
.03838	43.70	*3.50	•••	1.20	N 7
.03741	43.40			1.74	VLN-VZ
.00313					satif bet
	.00				
	. 66				
	.00	- 00	- 00	- 00	
	.08313 .05045 .06457 .06444 .08000	.08313 60.80 .05065 .00 .06657 .00 .06657 .00 .06800 .00 .00000 .00	.00113 00.00 00.00 .05065 .00 .00 .06657 .00 .00 .06604 .00 .00 .00000 .00 .00	.00313 40.80 80.80 .00 .05065 .00 .00 .00 .06657 .00 .00 .00 .06694 .00 .00 .00 .06000 .00 .00 .00	.08313 40.80 80.80 .00 .74 .0565 .00 .00 .00 .00 .0657 .00 .00 .00 .00 .06657 .00 .00 .00 .00 .06000 .00 .00 .00 .00 .00000 .00 .00 .00 .

		81-001 JPL 1	81-130 HUGHES (2)	81-101 TRW (3)	81-002 JPL ④	81-132 HUGHES 3		ON SUN
() 81-143 MSFC		7 13 (45) 76-301 JPL	() 11-103 TRW	() B1-134 HUGHES	10 91-104 TRW	(1) 91-003 JPL	(12) T1 (43) 73-182 JPL	(1) 91-146
		74-205 J ^p L (14)	81-105 TRW (15)	81-004 JPL 16	81-136 HUGHES 17	81-106 TRW (1)	JPL IP	MSPC
	20 81-107 TRW	(21) 81-138 HUGHES	(2) 81-006 JP1	(23) 81-108 TRW	(24) T4 (44) 73-163 JPL	25) 78-110 HUGHES	(26) 81-102 TRW	(27) 81-005 JPL

TI STD CELL	•
TZ TRACKER ELEC.	۲
T3 STD CELL	۲
T4 STD CELL	(
TS VOLTAGE REF BOX	۲

Figure 4. 1981 Module Location Chart

SECTION V

FILTERED CELLS

The relationship of the spectral irradiance of simulated sunlight sources to the AMO solar spectral irradiance is an important factor in the design and fabrication of cells and panels, since it directly impacts the predictions of performance in the space environment.

To facilitate the monitoring of the spectral irradiance of simulators, three modules of this flight were assembled with permanently bonded band pass filters of selected center wavelengths (Reference 5). With these and similar modules from previous flights, a family of AMO calibrated spectral samplings characterizing a simulator's spectral irradiance can be quickly and easily performed.

SECTION VI

MODULE CAVITY SURFACE FINISH

Questions have recently surfaced as to the effect of reflections within the white painted module cavity on the cell calibration value and the resultant effect on the setting of a solar simulator using these cells. Would a black painted cavity be more appropriate? Experiments with several simulators of VB. ious radiation angular subtense (0.5 to 4.5 deg) have demonstrated that a cell mounted in a white painted cavity will in fact show a calibration value about 2 percent greater than a cell mounted in a black painted cavity. However, these same experiments have also shown that this measured difference is not a function of cource angular subtense (at least over the angular range of 0.5 to 4.5 deg), and, hence, cells in either black or white cavities should "see" the simulators (migles of 0.5 to 4.5 deg) in the same way they "saw" the sun (angle 0.5 deg) in the original calibration. Therefore, setting of the simulator should not be dependent upon the cavity finish of the calibrated cell as long as that cavity finish is not altered from the calibration.

These laboratory experiments were extended by including two matched pairs of cells on this 1981 calibration flight, one of each pair being mounted in a white painted cavity, the other in a black. See Figure 5 for a representative pair.

Cells 81-001 and 81-002 are each K7, are from the same production run, and have the same absolute spectral response. Cell 81-001 is mounted in a black painted cavity, cell 81-002 in a white.

Cells 81-003 and 81-004 are each K4-3/4, are from the same production run, and have the same absolute spectral response. Cell 81-003 is mounted in a black painted cavity, cell 81-004 in a white.

The flight calibration values are:

81-002 = 87.10 mV 81-001 = 85.25 mV 81-004 = 77.55 mV 81-003 = 75.55 mVThe ratios of the flight calibration values are: 81-002/81-001 = 1.02281-004/81-003 = 1.027

These cell pairs were then measured in four simulators (LAPSS, ACC302, X25, and X25L of angular subtense 0.5, 1.5, 4.0, and 4.5 deg, respectively)* according to the following scheme. Each simulator was adjusted to the calibration value of one cell of a pair (say, the white painted one), and the output of the second of that pair was then measured. The results, shown as ratios, and the percent difference from the solar calibration ratios are given in Table 2.

These results are in agreement with the previous experiments demonstrating the validity of either cavity condition for a standard cell.

^{*}Large Area Pulsed Colar Simulator (LAPSS), X25, and X25L, Spectrolab, Inc; ACC302, Aerospace Control Corporation.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Cell Pair	X25	X25L	ACC302	L APSS	Sun (CALIB)
81-002 81-001	1.022	1.021	1.024	1.021	1.022
∆% vs Sun	0	-0.10	+0.20	-0.10	-
81-004 81-003	1.029	1.024	1.027	1.028	1.027
∆% vs Sun	+0.19	-0.29	0	+0.10	-

Table 2. White-Black Ratio Versus Source

Figure 5. Black and White Cavity Modules

8

SECTION VII

MONITOR CELLS

Several standard modules have been flown repeatedly over the 19-year period of calibration flights. The record of the one with the longest history, BFS-17A, appears in Table 3. This data shows a standard deviation of 0.39 percent and a maximum deviation of 0.92 percent from the mean.

In addition, the uniformity of the solar irradiance (i.e., no spurious reflections, shadowing) over the field of the modules has been demonstrated since the location of this module was changed in that field from flight to flight.

SECTION VIII

CONCLUSIONS

As emphasized by the history of repeatability of cell BFS-17A, viz, +1 percent (see Table 3), silicon cells, when properly cared for, are stable for long periods of time and may be used as standards with confidence.

It has been demonstrated that the cell mounting cavity may be either black or white with equal validity in setting solar simulators.

REFERENCES

- Seaman, C. H., and Weiss, R. S., <u>Results of the 1979 NASA/JPL</u> <u>Balloon Flight Solar Cell Calibration Program</u>, JPL Publication 80-31, Jet Propulsion Laboratory, Pasadena, CA, May 1, 1980.
- Greenwood, R. F., "Solar Cell Modules Balloon Flight Standard, Fabrication of," Procedure No. EP504443, Revision C, Jet Propulsion Laboratory, Pasadena, CA, June 11, 1974 (JPL Internal Document).
- Yasui, R. K., and Greenwood, R. F., <u>Results of the 1973 NASA/JPL</u> <u>Balloon Flight Solar Cell Calibration Program</u>, <u>Technical Report</u> 32-1600, Jet Propulsion Laboratory, <u>Pasadena</u>, CA, November 1, 1975.
- 4. <u>Solar Cell Array Design Handbook</u>, JPL SP 43-38, Vol. 1, p. 3.6-2, Jet Propulsion Laboratory, Pasadena, CA, 1976.
- Goodelle, G.S., et al., <u>Simulator Spectral Characterization Using</u> <u>Balloon Calibrated Solar Cells with Narrow Band Pass Filters</u>, <u>Proceedings Fifteenth IEEE Photovoltaic Specialists Conference</u>, 1981.

Flight date	Output, mV	Flight data	Output, mV	
9/5/63	60.07	8/5/70	60.32	
8/3/64	60.43	4/5/74	60.37	
8/8/64	60.17	4/23/74	60.37	
7/28/65	59.90	5/8/74	60.36	
8/9/65	59.90	10/12/74	60.80	
8/13/65	59.93	10/24/74	60.56	
7/29/65	60.67	6/6/75	60.20	
8/4/66	60.25	6/27/75	60.21	
8/12/66	60.15	6/10/77	60.35	
8/26/66	60.02	8/11/77	60.46	
7/14/67	60.06	7/20/78	60.49	
7/25/67	60.02	8/8/79	60.14	
8/4/67	59.83	7/24/80	60.05	
8/10/67	60.02	7/25/81	60.07	
7/19/68	60.31	.,		
7/29/68	60.20			
8/26/69	60.37	Mean	60.25	
9/8/69	60.17	Std. Deviation	0.24	
7/28/70	60.42	Maximum deviation	0.55	

Table 3. Repeatability of Standard Solar Cell BFS-17A (33 Flights over a 19-Year Period)

Each data point is an average of 20 to 30 points per flight for period 9/5/63 to 8/5/70.

For flights on 4/5/74 through 7/1/75 each data point is an average of 100 or more flight data points.

For flights starting in September 1975, each data point is an average of 200 data points.