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ABSTRACT

This paper considers the irrotational motion of an incompressible, inviscid fluid con-
tained in a partially filled tank. The tank is subjected to both transverse and rotational
vibrations whose frequencies are near the first natural frequency of small free-surface
oscillations. Following a method suggested by Hutton3, the analysis is performed re-
taining higher order terms in the free-surface dynamic and kinematic boundary condi-
tions. The theoretical investigation predicts the forcing frequency ranges, for various
combinations of rotational and translational motion, over which there are stable,
steady-state, harmonic, planar and nonplanar motions. The least stable case occurs
when a combination of motions occurs in mutually orthogonal planes.






SECTION 1
INTRODUCTION

The linear theory of the small oscillations of a free surface in a gravitational field
appears in essentially complete form in Lamb's Hydrodynamicsl. The advent of the
missile age has stimulated renewed interest in this problem, and in recent years
numerous papers have been written on specific problems in this area.

The dynamic response of the liquid propellant in the tanks of a space vehicle can affect
the stability of the vehicle; this influence can be alleviated in many ways, among which
are the proper choice of tank form, of tank location, or the introduction of baffles into
the tank.

These fluid oscillations, resulting from such sources as perturbation of the trajectory,
have been shown experimentally to be most critical when the excitation frequency is in
the region of a natural frequency of lower mode fluid oscillations.

Eulitz and Glaser? have compared experimental results with the previously obtained
theoretical solutions, which are obtained from a linear boundary value problem. Within
the framework of linear theory, the free surface of the fluid in a container undergoing
transverse harmonic vibrations should exhibit a steady-state, planar, harmonic motion
at all frequencies except resonance. Eulitz and Glaser claimed thorough agreement
between the experimental results and the linearized theory.

Hutton3 notes that the free surface of a fluid in a container undergoing transverse har-
monic vibrations does not necessarily exhibit a steady-state harmonic motion. In fact,
if the container is excited at a frequency well below the lowest natural frequency, pyq,
of small, free-surface oscillations, the steady-state fluid motion is harmonic with a
constant peak wave height and a single nodal diameter perpendicular to the direction of
excitation. The wave height increases with an increase of the excitation frequency.
When the excitation frequency is close to but smaller than py;, the smoothly oscillating
free surface changes to a violently splashing condition. As the frequency increases,
this motion continues until a frequency greater than p;, is attained. Additional in-
creases in the excitation frequency reduce the wave height up to the point where the
cycle begins again as the next resonant frequency is approached.

Hutton shows that the sloshing motion can be accurately predicted in an inviscid liquid
if the analysis includes appropriate nonlinear effects.

The present paper is an extension and generalization of Hutton's work to include not
only transverse harmonic oscillations of the container but also rotational harmonic
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oscillations. Again, the appropriate nonlinear effects are included. A comparison is
made between the two solutions and, in particular, the stability of the nonlinear motion
is studied.
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SECTION 2
DEFINITION OF THE BOUNDARY VALUE PROBLEM

The problem under consideration is that of a tank, partially filled with a nonviscous,
incompressible liquid, which is mounted in a system which is moving along a prescribed
path. Perturbations of the path of the system cause the liquid to oscillate. There exist
two possible types of motion that should be considered. The first is that of surface waves
of large amplitudes, possibly of low frequency, which could actually damage the tank
structure. TFor the most part this type can be controlled by suitable baffles in the tank.
The second type, which will be considered here, is that of surface waves of small am-
plitudes with a frequency near the natural frequency of the control system on the tank,
i.e., the natural frequency of the liquid-tank configuration.

Since the tank is in motion along some path, it seems reasonable to refer its motion to
an inertial coordinate system, for example the earth. However, if any type of measur-
ing device is attached to the tank, then it measures quantities in terms of a tank-fixed
reference frame which is moving relative to the inertial system. Thus, it is necessary
to be able to express the tank-fixed system in terms of the inertial system and vice
versa.

Let Y; be an inertial Cartesian coordinate system with origin O’ and coordinates ¥is
and let X; be a Cartesian coordinate system moving relative to Yj, with origin O and
coordinates x;. Then, instantaneously, the position of a particle moving with the X;
system can be described in the Y; system by

y., = 24, ta . x (2.1)

where the summation convention is being used and Latin subscripts take on the values
1, 2, and 3. In (2.1), Z_(t), with components measured in Y;, give the instantaneous
displacement of O relative to O’; and

aij () = cos (Xi' yj) (2.2)

measures the instantaneous rotation of x; with respect to Y- Subsequently the follow-
ing notation will be used: a barred vector has components measured in Y; and an
unbarred vector has components measured in Xj.

Since a;; are a set of direction cosines, they satisfy, for any t,

j

2yt = ; 2.3)



where 6ij is the Kronecker delta. Denote df/dt byf and take the derivative of (2. 3);
then

a,a. +a.a =0 (2.4)

Define

w., = a_a, 2.5)

Thus, using (2.4) and (2.5), one has

wji = ajkaik = —ajkaik = —aikajk = -wij (2. 6)

That is, Wi is a skew-symmetric second order quantity which can be shown to be a
second-order tensor,

A dual vector w; can then be defined such that

5 T TSk %k
where €ijk is the third-order alternating tensor. Thus, from (2.86),

a_a_ = 2.7

ik %k~ " Cijk%k

where wy is the angular velocity of X; with respect to Y; measured in X;.

The absolute velocity of a particle whose position is described by (2.1) can be found by
differentiating (2.1) with respect to time. This operation gives

y. = Z.+a kX +a.x = q. 2.8
Vi T AT RS TN T Y @9

where <_li is the velocity measured in the Yj system. The measuring device fixed on
the tank measures qj,where qj is the velocity measured in the Xj system and

. = a -_ 2.9
9 iqu (2.9)

Using (2.8), q; can be written as

Y " Ay (Zj * akjkk * ak]xk) (2.10)
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With (2.3), (2.7), and the fact that Z; = aj; Z;, (2.10) becomes
= ; —+ . — 2. 11
94 74 YR T G % @.11)

or

-7 + %k + 2.12
:h Zi X, Eijkwjxk ( )

where the skew-symmetric property of the alternating tensor €ijk has been used.
The next quantity of interest is the absolute acceleration

- _ = 1
a, = q, (2.13)

From (2.9), (2.3) can be written as

-4 da,
= = — 4+ 9 . 1
4T @ <ajiqj> qiat T HiY (2. 14)

The quantity of interest is a; = ay E_Lj; thus from (2.14),

dq,
e T Tt MY (2.15)
or
qu
= _— _ + 2.16
A a  Sik*%iY (2.16)

Here it is noted that the velocity q; is a function of not only the time, but also the coor-
dinates x;, which are also functions of time; thus

k _ k N k i @.17)
dt ot o] Xi dt
From (2.12),
dx, _
_ =y = - - . 1
& 8T %% T G (2-18)



Then (2.18), (2.17), and (2.16) give, finally,

) aqk 3 qk

- X -7 - + 2.19
% T 3t 3%, [qi 2 ‘ijs“’jxs] ik %Y (2.19)

In vector form, (2.11) and (2.19) appear as

q=q *wXr +r

(2.20)
and
§=E‘E_+;x€+(a_a —;X—;)'V_c; (2.21)
ot o
where ao is the velocity of O relative to O’
The Eulerian equations of motion for an incompressible, inviscid fluid are, in the
inertial system,
- = 1
3 = F -19P (2. 22)
i i p o yl.
where Fi is the specific body force, p is the density, and p is the pressure. Since
v = ¥y %y xy)-
3
3p _ ap “k _ o 2 (2.29)
3 Y; o Xk o} yi 13X
Transform (2.22) to the tank fixed system using (2.23); then
a = F --a a 2P (2.24)
j e jikiax
or
1
a =F --2F @.25)
] I pox,
J
Assuming that the motion is irrotational, there exists a potential, ¢, such that
- oo
.= T 2.26
q A (2.26)
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The incompressibility assumption implies that

—1_9 (2.27)

Equations (2.26) and (2.27) then lead to

2 d (3¢
= —(22.}=0 2.28
v oo ayi(ayi) ( )

Transform the above to the tank fixed system, noting that

bo)
20 _ 38 Tk _ 230
ayl. axkayi k1axk
Then
X
= - — 2.2
qj dX. ( 9
]
qu
- - = 0 .
% (2.30)
]
2 o) 3¢
=2 (22)= o .31
2o ax.(axj) (2. 31)
J

Thus, the solution of Laplace's equation furnishes a possible potential function for an
incompressible, irrotational flow. In order to determine exactly which potential func-
tion is the solution, certain boundary conditions need to be prescribed.

Consider a tank of arbitrary shape partially filled with fluid. Assume a constant accel-
eration is acting along the X3 axis. The surface of the liquid then assumes a planar
surface normal to this axis, this surface being called the free surface or quiescent

free surface. The origin of the X; system is taken at the center of gravity of the accel-
erating fluid system. The motion of the tank-fixed system X; relative to Y;, charac~
terized by Z; and wj, are oscillatory motions superimposed on the constant-acceleration
motion. These motions will induce perturbations or disturbances of the free surface.
The measuring device traveling with the tank sees only the forcing motions or
perturbations.



In this analysis it will be assumed that the tank is rigid. With this in mind, the bound--
ary condition on the wetted surface of the tank must be that the velocity of the liquid
normal to the tank wall must equal the normal component of velocity of the tank itself.
Thus, if vj is the unit exterior normal to the tank and qj = - ai}%- ,

i

3¢ . ]
- —_ = <+
vy o, Vi [ 2y " G % (2.32)

where k; = 0 for a rigid tank.
There are two conditions at the free surface. Denoting the disturbed free surface by
n (xl, X9, t) and the unit normal to the quiescent free surface by n;, the kinematic con-

dition that a particle of fluid which travels with the free surface as it moves must have
the same velocity as the free surface itself is given as

S|

where xg is the displacement of a particle in the Xg direction, and, as in (2.17),

9
d *k
a .38 , ko (2. 34)
dt at ot axk
Expanding (2. 33) and using (2.34) and (2.12)
on + on . . an - . _
il L —7 = -7 = = .
3t~ 3%, % 5%, Xg T 93 7 43 T G @R Xy T W (2.33)
But since n, =mny = 0 and ng = 1, the right hand side of (2. 35) can be written as
(qi - % - €ijkwjxk)ni
Thus (2.35) becomes
an an . .
7+ Lk = - Z, - = X
St ax % T (% 7 B ey on g < m (2-59)

The second condition at the free surface is a dynamic one which states that the pressure
at the free surface of the fluid must equal the ambient pressure. To find the form of



this boundary condition it is necessary to integrate the equations of motion. Substitute
(2.19) into (2.25); the equations of motion become

qu aqk
—— + — p—

B * = Fg-—s— 2.
3t ox, 9 - % €1ts""1;"s] €5k %19 k (2.37)

If the only specific body force is that due to the gravitatiohal field in which the tank sys-
tem is moving, (2.37) can be integrated directly:
P-p '
o) 1 1\ 2 X0}
= - + — - - — me—— .
b [ g+ 5 (o - 2,) (Gijkwj %)% " 3¢ ] (2.38)

where p,, is the ambient pressure and ¢ is the magnitude of the acceleration of the tank
system. It is assumed here that p, is a constant,
at the free surface is

Thus, the second boundary condition

39 1 . \2 d¢
_— = + = — + WX =
X an Z(ax + Zi) eijk ik 5 ,onx3 n (2.39)

In summary, the mathematical description of the motion of an incompressible, irrota-

tional fluid confined in a moving, partially filled tank subject to translational and
rotational perturbations is

Ve =0 (2. 40)
—vi%—i = v, [Zl + Gijkwjxk] (2.41)
on the wetted surface, where Vi is the unit exterior normal to the tank;
?+ixqi-5<i = —(%% +2i+€ijkwj )ni, onx3 =7 (2.42)
where n, is the normal to the free surface; and
%:-5 = an +%(%:t + 2i>2 + Eijkwjxkga;(bi.’ onx, =7 (2.43)

If the free surface oscillations are sufficiently small, terms of second order in the
velocities can be neglected. Then (2.40) to (2.43) become

(2. 1a)



—y 2P = . + 2.2
Yy “i[zi ‘ijk“’jxk]’msw (2.2a)

where S("J is the wetted surface.

an = - _—a¢ ; =

51 (BXi + Zi + €ijkwj xk)ni, on x3 n (2. 33a)
a¢ = -

51 an, onx, n (2. 4a)

The last two equations can be combined into a single condition:

13 ¢ A .
— = - -+ = .
p atz (axi Zi + Gijkwj xk) ni, on x3 n (2. 5a)

If is is assumed that Z; and wj can furthermore be represented as harmonic oscillations,

i, = Zfo)ei»Bt
i i
(2.6a)
0 .
w = et
i i
then it may be assumed that
= igt
6 (xpt) = v(x)e (2. 72)
The problem then reduces to
2
vip = 0 (2. 8a)
L () (0)
Viaxi ui[zi " s xk] ons_ (2.9a)
32 Y (0) (0)
2 =< =X = 2.10
o« ? (axi A Yy "k)“i’ onxg =1 (2-10a)

The solution to (2. 8a) through (2.10a) can always be obtained if the tank is a prismatic
cylinder with X3 parallel to a generator and with cross section such that v2 Y is separa-
ble in the appropriate three-dimensional coordinate system.
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SECTION 3
NONLINEAR SLOSHING IN A CIRCULAR CYLINDRICAL TANK

The natural course here is to express the problem in terms of cylindrical polar coor-
dinates (r, 8, z). Before doing this, consider (2.41); there exist two segments of
wetted surface: the side of the tank and the bottom of the tank. Considering the side
first, the normal y; has the following components:

vl = cos @
v, = sin@ |, (3.1)
=0
Vs
y

Thus, (2.41) becomes
-y, — ~V_—2 =V Z +V Z +V +V .2
Y15% 23x 191 7 V2% T 1k 9% T Ve Sk @ % @-2)

On the bottom of the tank the normal v; has the components

- A
vy 0
vz =0 e (3.3)
v, = -1
3
J

Thus, (2.41) becomes
1) .
= -7 - .4
3%, 3~ “35k%9 %k (3.4)

Note that is is absent in (3.2) and that wg is absent in (3.4). This condition will in fact
be the case for any cylindrical tank whose generators are parallel to the X3 axis and is
not merely a peculiarity of the circular-cylindrical tank.

In the following, (2.40) through (2.43) will be transformed into cylindrical polar coor-
dinates. So far all the quantities in these equations have been measured with respect
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to the tank-fixed rectangular Cartesian coordinate system. These quantities may also
be expressed in a tank-fixed, cylindrical, polar coordinate system. In doing so, it is
also convenient to shift the origin from the center of gravity of the fluid to the geometric
center of the quiescent free surface. Let

X, =%
x2=y
X, = 2
3

and use the usual transformation equations to cylindrical polar coordinates

X = rcosé
y = rsing (3.5)
zZ = Z

2 2 2
2 3 ¢ ., lag 13 ¢ d ¢
T m— = 4 —- + =
Ve 2 " T>r 2 2 5 -0 (3-6)
dr r 36 D2
Let
\
b =
i Sk %
b1 = wzz - w3rsm6
> (3.7)
b2 = w3rcose - wlz
b3=wlrsin9—¢qzrcose )
Denote the quantity Z; by u;; (3.2) and (3.4) become, respectively,
—a—¢ = -u,co8sB -u_sinf - zw_cosH + zw. sin b (3.8)
dr 1 2 2 1 )
°¢ _ i + » 0 (3.9)
3z = u3 wlrsme wzl cos .
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It may be noted in (3.8) that wgq is absent. This is only true for a circular
cylinder. To see this, consider the last term, Vjgjk wjXk in (2.41). In vector form
this is

v -(pr)=Z5. (EX;) (3.10)
where
p = (rcosp, rsing, z).

On the side of the circular-cylindrical tank, vj has components given by (3.1). Thus,
the third component of pX p is

(;)‘x_l./)3 = rcos@sing -rcosfsing = 0 (3.11)

Thus, from (3.10), wg is absent in the expression vj¢jjkx wjXk for a circular cylindrical
tank. Since this term in (2. 9a) is the only place w; enters, wg is absent from this
boundary condition for this special tank configuration.

On Xq = n(r, 8, t), the unit exterior normal has the following components:

n1=n2=0

(3-12)

n =1
3

Therefore, from (2.11), (2.42), (3.7), and (3.12), one of the boundary conditions at
Zz = 7 becomes

3¢ : _9n _9m 9°¢
_E —u3—w1rsme+ w rcos.e—a,c 37 51
_ 1232 ( gn_sinea_n) ( 3n coseam)
236 36 uy\eos b5 T 5g/) Y \SO Lt T~ 5
- _a_ﬂeeiﬁa_n_>_ ( a_n_fi_n_ea_n)_ an
Ty nsing ok o Sy wymieos 8 S - 55" W55 G119

The other boundary condition at z = 7 can be obtained from (2.43) using (3.7) and (3.12):

2 2 2
36 _ 1 (@) (1a¢) (Bcb) 23¢ .
5t~ o7 *2[ st) "\z38) T\3z) 37 (a,cos 6 + u, sine)

28@5( . D¢ 2 2 2
+ - == - + 2 == + + +
* 36 u2 cos 8 u1 sme) Zazu3 u1 u2 u3
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wy
5 d
+w ¢nc se——-—nagsme 383 r-é-—(w sing - wzcos{-))

_ 99 _. cos 0 a¢)
wln(ar sin@ + T 38 (3.14)

Thus, if the cylindrical tank has radius a, and the original depth of the fluid is given by

zZ =

-h, the motion of the contained fluid in a circular cylindrical tank is governed by

the following partial differential equation, subject to the given boundary conditions:

for

and

Onr

On z

2 2 2
2 2 .
ar ror r 592 az2
0<r <a
<0 <27
-h <z <17
a
%% . -u, cos @ i + i
ST 1cs -u2 sin 6 —zwzcose zwl sin @ (3.16)
-h
39 -u, - ing + r 6
Z 3 ~ Wyrsm W, T €OS 3.17)
n
28y - ~ _3n _23mz¢ Ll 3m3g
32 u3 wlrsm6+w2rcos6 5t ST 5T r2 58 38
_ on _sin6 a'n] [ omn , cosb an]
u1[cose TR REY) e S e A T I Ty
_ on cose_a_Q] [ on sinean] on
uz[S’near sy BRI R e y) Y (3.18)
ro]o) o9 1l 3¢ 2 9@ 2 dQ
— = +_ —_—— —_— —_— i
t on (ar) (r 89) +( z) ]+ r[ul cos9+u2s1n6]
13 oY) 1[ 2 2 2
[ —. - —_— pa—
I‘aeluzcose u1s1n9]+azu3+2[ul +u2 +u3]
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1 d
+w277[‘2%0056-;:—g-sin6]+ w32—g a—:r [w sing - w, cos 8]
- w 77[——-51 o+ C°iegg (3.19)

. To simplify the problem described, make the following transformation:
p(r, 8,2z, 1t = ¢(, 8, z, 1) +u1 r cose+u2 rsing-zr w, sin

+zw2rcos6 (3.20)

Equations (3. 15) through (3.19) become:

2
v b=0 (3.21)
Onr = a
sy _
= 0 (3.22)
Onz = -h
3Y .
Fyalia u3—2rwlsme+ 2rwzcose (3.23)
Onz = 7
Y . . . . . .
31 - ulrcose - uzr sin 6 +17rwl sinf§ - "70021' cos 6
2
2 2 2 u
|G2) -G 3) +(32) | e o)) 7
= + (=X} + (=2} (2% -2 + =
on 2[<ar Y 5z 2 \“1 T ¥) 7 2
+ir2( zsin6+ 2c029)+28¢ . U3
s — - ey,
5 wl wz aZ(ru.)lsme rwzcose + p )
- 317 i ing
r wlw2s1necose+u3w1rsm —u3w2rcos9 Nwyuy u2w3rcose
oY
+ + + i
nwu, nw3w2rsm6 ulw3rsm6 + Wy 338 +nw3w1rcose (3.24)
and
3P 3 mdd3wp 1 ma 3
~— -u_+2r cosf - 2 __T)__T}_____‘n_d)__ n
5z U3 W, ©086 - 2rw, sinG = S - S T S 393 “isp O
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The free surface 7 is one of the unknowns, but it may be eliminated between (3.24) and
(3.25) as shown in Appendix A. Equations (3.24) and 3.25) may thus be replaced by
(A.12):

2
a b a__b b
11°00 21%01 21200 11°11%00 222”00
a + a - + a - + + +
00 201 o 02 o o 2
o 200

-1. =27 . .
+ + B + - i + i
B11 12 B13 allcx u2rsme o roluzr sin B

. . -113 2 2 2 3 2 2 2
b i + b ] + - i + =
11u2r sin A rol 00 o [21' wl sin B 5 r wz cos 6

-+

2
Zgrr<u3 - Ul) - 3r wlwz sin § cos § + 2u3rol + uler sin 8

+

-1 o -2 : L
“’3%])' Bzz<°‘ [bgy * 1y sin 6] - o [oy - r"1”boo *Uyreing

ca b+ 32 a2 + 20202 cos? g +
@ Pg1 T g w8 g T Wy © gzr(us 01)

2
i + 2 + u W rsi +
3r w w2 sin 8 cos 8 u3ro1 u, 3rsme w3£9]>

1
+ a L. rsing + B _1’b + 0 rsjn9,+ilgg _2(2b u_rsing
12% % " Pa3® [Poo T Y2 2 ¢ 00 2° %
2 2 2 B33 -2 2 4
+ 1 i + — + U i + =
u, T sin 6) P [bOO u, r smel 0(77) 0 (A.12)
where
3y
= —=(r, 6, 0, t
£9 3 (r, 6 )
oY
= ’ F) 0, t
£, = <5 (r.0, 0,1
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aij’ bij’ and By; are functions of the potential  and its partial derivatives, all evaluated
at z = 0 (see Appendix A); and

crl = w2 cos § - wl sin 9

This replacement leads to the boundary value problem consisting of (3.21), (3.22), (3.23),

and (A.12), which involves only the potential function ¢ and the prescribed tank dis-
placements. The tank displacements are assumed to be '

i,
x; (®) = €,8inwt

Gi (t) 9; sin wt o (3.26)

i=1,2, 3

J

i .
with € and eé "small" and w close to or equal to the lowest natural frequency py;
given by

Pyp = J‘“ll tanh A, b (3.27)
where )\11 is the first non-zero root of
, =
J1<)t1n a> 0

Here the x; (t) correspond to translational motion, and the 9j (t) correspond to rotational
motions. Since 58 and 96 are small, it can be effectively assumed each set is the same
for all i, say € and 69> respectively; and furthermore it can be assumed that

‘o
= — .2

% " & (3.28)
The tank velocities %; (t) and @; (t) are

ki(t) = € cos wt

. (3.29)

6i ty = —;— cos wt
where

€ = w€0



Following Hutton3, a steady-state harmonic solution to this boundary value problem is
posed in a perturbation form, in analogy with the Duffing problem4’ 5,6 in terms of
the parameter ¢

1
3 ~ - .
Y = € ltbl (r, t) cos wt +X1 (r, t) smwt]
2

+ 63 [!bo(;) Y, (;) cos 2wt + X, (?) sin Zwt]
+ €[¢>3 (;) cos3wt + X3 (;) sin3wt] (3.30)

where the functions ;pn and Xn for each value of n, each satisfy

2
vV & =0
%—?= 0,onr = a > (3.31)
_B_g = 0,onz = -h
oz J

Here ; means dependence upon r, §, and z. A set of normal modes of vibration which
satisfies (3.31) identically is

coshA (z + h)
mn

[Amn (t) cosmg + B_ (b sin me]J (3. 32)

m Amn r) cosh) h
mn

where the J, are Bessel functions of the first kind of order m, for m a positive integer
or zero; and A, are an infinite set of numbers for each m obtained from the equation

Jn;()\mna) =0 (3.33) .

The functions A (t) and B, (t) will be called the generalized coordinates of the mn'th
mode; they depend only on the time, t. The natural frequency of small, free-surface
oscillations in the mn'th mode is denoted by p,,,,. When the tank displacements are
harmonic motions at a frequency close to or at the lowest natural frequency, pjq,
associated with the J; mode, the generalized coordinates A;; and B, dominate all
other generalized coordinates. Thus, it is assumed that the first order terms, y; and
X1, in (3.9) contain only the J1 mode; thus {7 and X1 are chosen as
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cosh All(z + h)]

_ | .
v, = |1, ) cos 8 + £ ) smele(xllr o T (3. 34)

cosh >‘11 (z + h)]

x, = [, @) cos6 + 1, ) sino Jl(kllr) oo (3. 35)

where the transformations

1 2
= — 3 t

(3. 36)

[V ]

2 :
p —‘u)[l—ue]

have been used. In (3.36), v is a dimensionless measure of frequency and r is a dimen-
sionless time parameter. A derivation of the above transformation is given in the
appendix.

As shown in the appendix, (3.30) is then substituted into (A.12). Equate the coefficient

of e‘é-to Zero:
( 5 2 t +(gX 2% Vsinwt = 0, o 0 AL 22
- o - n = 0,onz = .
¥y, l114’1)C s w (0‘ 1z~ P11 1) @ (A.22)

Thus (A.22) is satisfied identically for all time if i) and X1 are chosen as in (3.34) and
1

(3.35). As can be seen, the coefficient of 3 involves only the J1 mode.

2
The vanishing of the coefficient of ¢3 gives

zbo =0 (A.27a)
2

X, 3r.°-1
2 16 %16 11 2

- o = +

ad,, - TP, 2p11<xlr‘b1r+ 2 2 X11“’1X1> (A.27D)

< 2 2
% —enlx oo [xZ_,2, 08 Y
« Pr1Xe = Prol®Fie 7 Yin 2 2
T r
sr.2 .1
€11~ 2 (Xz 2) (A.27c)
T3 A\ ¥



The functions ¥, ¥, and X, are chosen to satisfy (A.27a), (A.27b), and (A.27c). If
Yo is taken to be constant, (A.27a) will be satisfied identically. Choose {9 and Xy to be

> . cosh[x0n @+ h)]
by = Z AOnJO(XOnr) coshx_ h
n=1 On

=z A - cosh[)\2n (z + h)]
+ + i =
Z <A2n cos 28 an sin 2 9)J2<>\2n r) cosh)_ h (3.37)
n=1 2n
and
e - cosh[k (z +h)]
— On =
X2 Z COn'IO()\On r) cosh)x h
n=1 On
= N - cosh[}\ (z +h)]
z . 2n
* (Czn cos 28 + D2n sin 2 G)JZ(XZn r) coshA_ h (3.38)
n=1 2n
where

J(),(>\Ona> - J2,<A2na) =0

By finding the appropriate generalized coordinates in {9 and X5, (A.27b) and (A.27c)
can be satisfied. These generalized coordinates can be found by introducing (3. 34),
(3.35), (3.37), and (3. 38) into (A.27b) and (A.27c) and applying a Fourier-Bessel tech-
nique using the following orthogonality conditions:

(

a O,m # n

/ rJO(AOmr)JO(AOnr>dr =4, (3. 39)

a 2
0 — ) =
\2 JO<)\0na,m n

(0, m # n

a
/rJz()\zmr>J2<A2nr>dr - Xziaz Sy (3. 40)
0 —T)\-Zg——JZO\Zna)’m = n

These conditions give the generalized coordinates of the J0 and J2 modes as:
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A = £ £ f
Aon = g (1fz+34) )
Bon = San (fl i f4)
Bon "o (1l t ol
‘ (3.41)
& —ggﬂ(f2+f £2 ¢ )
on 2 \2
Q
- on /.2 .2 .2 .2
-_on (e 14 )
Con =72 ( tiy -t - iy
D = f f
D2n QZn(fZ 4 f1 3) J
where QOn and an are constants defined in the appendix.
baab 2
a11bgo aj1bgr  a12bgp  211PgpP11  2gabgg
The terms a5 291 - T o 249 = + + 5 - 5
o o o o 2&

and By, each contribute to the coefficient of ¢. The coefficient of ¢ contains sin wt,
sin 2wt, sin 3wt, cos wt, cos 2wt, and cos 3wt. With this type of approximation it is

assumed that
from a50 and

only the first harmonic terms need vanish. The first harmonic terms
B,, are

o [ [9%, d,
Py [F - U"bl - rcosg -r sin9]cos wt —(—d—T—+le>sin wt
2r 2r
- <oz - —Hcose + ~ sin 6) cos wt (3.42)

where pﬁ rcos B coswt corresponds to the translational motion uj, pllz r sinB cos wt
corresponds to the translational motion Uy, o COS wt corresponds to the translational

. 2r . . 2r .
motion ug, 74— COS 8 cos wt corresponds to the rotational motion wy, and ——sin § cos wt

h

h

corresponds to the rotational motion w;.

The first harmonic terms from ag; -

211boo
— a
o

re

pll[‘blrxzr RS T ?(*blexze B X1e‘b2e) - >‘1:2L (Cli - 1) (Xl ‘bz_‘blxz>

1
B >t11?:11<¢’1 Xoz ~ Xl”bzz> " E(l‘bIXZzz - Xl‘bzzz)] cos wt
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1
- pll[XIrXZr Tt ?(Xlexze * ‘ble'bze)

* Ali(cli } 1)(x1x2 * wlwz) - )‘11C11(X1X2z Yy wZz)

1
+ = + in wt .
2 (Xl X2zz ¢1 w%z)] sin @ (3-43)
a;, b, -2,5b
11701 1
Similarly, there are first harmonic terms from agy - 2 00
2 (43
2a1:baab11 F @9s b
11700™~11 22700
+ 5 which because of their length are not written out here.
2¢¢

The equation obtained by setting the first harmonic terms of the coefficient of ¢ equal to
zero is now satisfied in a Rayleigh-Ritz, or averaged, sense by multiplying the equa-

tion by
cos 6
Jl(x11 r) rdrde (3.44)

sin 6

integrating over the free surface, 0 < r<a, 0 <8 < 2%, and using the known results

a 2m
cos 6
/ / i Jl(xllr)drde =0 (3. 45)
g 0 sin @

a 29
2 .
/ / r sin 8 cos 9J1<)\11r>drd6 =0 (3.46)
0 0
a 27 ) Sinz P a
/ / r :, J1<A11r)drde - X 2J1(A11a) 3. 47
> 0 cos 11

The contributions from agg *+ B, are

a

2m
/ / (2 * B,y ) cos 89, (x , x)rdrde =
0

0
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2 2

_ d
2 ———-—-—Alla i Jz(k a) fz - vf - -—?—J (A a) ) cos wt
P11 an 2 1V /\ar 1 NERLEE w
11 11
2 2
2 ——-————Alla _lJz(A a ii+ f sin wt
TPy oy 2 1 11) dr = Ve w
11
2ma (wz)
+ J (1 a) cos wt (3. 48)
NEMRAGH
11
a 2 2 2
+ B inBd (). . rjrdrdg = 2 Xllall_l Z(A a)
(aoo 11)Sm 1( 1) P13 oy 2 1\
0 0 11
df A 2a -1
__?i - pf i U J (uz) cos wt - 2 -————-11 Jz(x a
ar V'3 2 1(*113) neAS ST NERRE! 11)
A1 11
d
é vyt in wt 212 <A a) ) t 3.49
dr 4 (3@ 2 “1\*11 cos w (3. 49)
X “h
11
aiq1 b
The contributions from ay; - —11700 - By are
o

a 27
= +
/ /BzcoseJl<>\llr)rdrd9 wpll[fl(fjfj>Gl f4(f2f3
o 0
- + - - i
f1f4)G2]coswt n—pll[fz(fjfj)Gl f3(f2f3 flf4)G2]s1nwt (3. 50)

a 2
/ / B, sm9J1<)\11r)rdrd6 = wpll[fs(fjfj)Gl - f2<f2f3
o 0

- + G+ - i
f1f4)G2]coswt wpll[f4(fjfj)ql fl(f2f3 f1f4)G2]smwt (3.51)
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where f f = f2 + f2 + f2 + fz, G_,and G_ are constants defined in the appendix.
ij 1 2 73 4w 2

The contributions from

,
b - b 2 b +
B - a - 31171 " %12 00 211°00°11 T %2200
3 02 o 2
2¢
are
a 21 2
B cos§J (. rirdrdg = ilffff1+fff
3 1<11>rr 4 l(jj)l 4(23
0 0
2
£ £ VA |cos t—pllf fEVE - £ (£ £ - f f )H |sinewt 3.52
14)2 w 42<jj)1 3(23 14)28"’ (3.32)
a 2m
B singd_{A rrdrd9=——pil—f ffI; f(ff
3 1(11) 4 3(jj>1 2(23
5 0

2
—ffItIcos t—mf ff;1+f ff—ffﬁ in wt 3.53
14)2 w 4 4(jj)1 1(23 14:)2S (3.53)

where H 1 and H_ are constants defined in the appendix.

From the Rayleigh-Ritz process two ordinary differential equations are obtained. Set-
ting the coefficients of sin wt and cos wt equal to zero in each of these equations results
in four, first-order, nonlinear, ordinary differential equations.

This system is

dt,
1
L. q [t £), i= 4 :
% Gi<1, £ £, 4), i=1, 2, 3, (3.54)
where
Gy =-H o
Gy=H ,
_ (3. 55)
Gg=-H4
G =H,
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and

H = (Fl + Az)fl + (U2 + Az)f4 +%vfjfj

1 2 1 2
+ = -—K - .
4Kl(fj fj) 2 2(f2f3 f1f4) (3. 56)
where
H,i = _b__Ii 3.567
A 3.57)

1

The constants Fl’ K , K

R Al’ Az, U2 are defined in the appendix by (A.18), (A.19),
(A.20), and (A.21).

2

A steady-state harmonic solution to the boundary value problem is given by the roots of
the four equations

1 f H = ’ i = 1! 27 3, 4 .
Gi<f1, £, £, f4> 0, i (3. 58)

The roots of (3.58) are functions of f; where the f; are independent of the time 7. The
form of (3.54) is similar to the equations derived by Miles” for the undamped spherical

pendulum.

There are two solutions to (3.58). The first, called planar motion, is

fl =y
f3 = vQ (3.59)
=f =0
f2 4
where y is a parameter independent of time. The transformed frequency is
- 2
v = Py - KlR-y (3.60)
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where

= - N

P <F1+A2)
A+ U

Q=.__l__.3 > (3. 61)
F+A
1 2

R=1+Q2 J

The second solution to (3. 58), called nonplanar motion, is

f = A
1 Y
1
-1\ 2
2 Py
= - — :—L
fz <7 K2R> ®
> (3.62)
f =
-1
2 2 P
f =49 - Y =L2
4 K R
2 P
with
A K
-1 21 2
= - +
v 0% <K3 K >+RK4'y (3.63)
2
K1
Kg = szl
(3. 64)
K4 = K2 - ZKl

It is seen that the 1onplanar solution is real and, hence, exists for v > 0 when

P
-y3—-——>0, andfor-y<0when-y3— < 0.

The names planar and nonplanar motion are used in analogy with Miles' terminclogy for
the spherical pendulum. It is not to be implied that the motion of the free surface is
necessarily described by the names given to the two solutions of (3. 58).
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SECTION 4

STABILITY OF THE STEADY-STATE HARMONIC SOLUTION

To determine the stability of the motion corresponding to a given steady-state solution
consider the perturbed solution

£f.ry = f,(O) +c_e>\T
i i i
Ici[ <« 1

(4.1)
i=1,2, 3,4

The f (0) are constants corresponding to the steady-state amplitud
solutlons of (3.54).

es of the h
The corresponding steady-state solution w111 be
and unstable if Re(d) > 0.

armonic
stable if Re(\) <

Substitute (4.1) into (3.54), neglect products of the c;'s, and use the fact that the f; ()

Q
=

are solutions of (3.58); the following set of homogeneous algebraic equations are
obtained:

—

djp A do di3 diy ¢ 0
d _
21 dpg ~ 2 o3 doq 2 0
- (4.2)
+
33 d30 dgg T A day 3 0
d d d d. - c 0
3! 42 43 a4 || %4 L]
where
(0) .. (0) (0) . (0)
= 2K +
41 157t Koty 'ty
d

2 2

(0) . (0) (V)] (0)
12—u+Kl(fj f )+2Klf2 -K f

13

_ (0) . (0 (0) . (0) (0) . (0)
2K £, ' f, +K2[f1 £, - 2f ]
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_ (0) . (0) (0) . (0)
d, = 2K £ 08 + KDL
) . (0) ©° 0
d, = v+K1(fj f ) +2K £ - K
dop = d5q

_ 0) . (0) (0) . (0)
dyg = 2K £ 7E0 T+ K,

- (0) . (0) ). (0) (0) . (0)
d,, = 2K 1000 + Ky[f) 1, 2 F,
d3; = dyy
dgp = dpy

_ (0) .. (0) (0) . (0)

d,, = 2K £ 00 + KD,

©) . (0) 0 0
d,, = v +K1[fj f ] +2K £ - K
dyp = dg
do = 945

(0) . (0) ©? 0
d = v+ Kl(fj f ) +2K £ - K f
dyg = 933

The solutions of (4.2) will be nontrivial only if the determinant of the coefficient matrix

is zero.

4.1 STABILITY OF PLANAR MOTION,

This condition gives an equation for the allowable values of X.

Substituting (3. 59) into the expressions for

the dij 's and expanding the determinant of the coefficient matrix in (4.2), one obtains

4-2



4 2 2 4 2 2 2 4
+ LS [ N _
A A (Ml M2 2M3)+M1M2 +4K1-y QM K2Q y M

where
2
vy <K1R } KzQ)
’ —
Ml
0
2 2
v + Kl?/ (1 + 3Q )
/ =
M2
0
2
K,7 Q
M =
3
0
0
M =
4
2
vty (KlR - KZQ)
2 2
vrEyY (3 *Q )
M =
5
0

The boundary between stable and unstable planar motion corresponds to A = 0.

A = 0 in (4. 3) and substitute fory from (3.60):

v + K1y2(3 + Qz)

v + 'yz(KlR - KZ)

2
2K, 7 Q

v+ yz(KlR - K, )

v+ Kl‘yz(l + SQZ)

- 12 2 6 4
b% 4|E\I4‘y - N3P‘yg + N2P y o+ P3N1‘y3 + P]= 0

5

2
+M=0 (4.3)

Set

(4.4)



where

2
N, = -K, +2K Q - K,Q )
_ 2 3
N, = K, K,Q - K,Q (Kz * 2K1) - 2K1K2(1 * Q)
> (4.5)
~ 2/ 4 3 2
N3—2K1K2(Q -+ q -Q)
2 2 2/ 2
N4=—rK2K1Q(Q +1) )

One possible solution to (4.4) is ¥ = +«. Since y is actually an amplitude this would
correspond to unstable motion. Letg = y3; then the other possible solution to (4.4) is

4 3 2 2 3 4
- N.Pog"” + N.Pg" + P + P =
N40 N3 o N2 o N o 0 (4.5)

This equation can then be solved for g = 'y3. The solution of (4.5) for various pertur-
bations is given in Section 5.

4.2 STABILITY OF NONPLANAR MOTION. Substitute (3.62) in the expressions
for the dij 's:

d; T YKL
-1
K Py
2 9 1 2
=y ++°(2K R - e (14 )
djg =V ”( 1 B QK4) K R ( 3Q
d =L(KQ2+KR)
13 Y%y 2

-1
9 2K1P'y

= Qlk + —
4, Q< 4”7 K, R

i = v+ 2(2KR K)+P'11 i
91 Y 1 4 Y \R K,

dyy = dyy
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24
31
32

33

34
41

42

43

d44

Substitute the

d
12

21

34

d4 3

Y L(K4 + K, R)

=4
24
=4,
= -dyy
-1
K, Py
2 1 2
= - - - +
v -y <2K1R K4) = <3 Q)
2
= dyg
= dpg
K 2
~ 2 2 1 Q
= U+y(2K1R—K4Q>—Py <K2+ R>
= dgg
value of v given by (3.63) into the expressions for d12’ d21, d34, d43:
2 -1
, 2K, PQy
= + -
Y <2K1R K4> K R
2
-1
2 2\ P
- 7 (2K B+ K, Q) + %
-1
Y 1 4 KR
. pgZ, !
y
= + + x 7
Y (2K1R K4> R

Substitute the above values of the dij 's into (4.2) and set the determinant of the coeffi-
cient matrix equal to zero to give a fourth-degree polynomial for the determination
of the parameter )\, such that (4.2) has nontrivial solutions. Stability of the
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steady-state nonplanar solution is determined by examining the roots of this quartic
equation., The regions of stable and unstable motion are given in Section 5 for various
perturbations.
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SECTION 5
NUMERICAL EXAMPLE

To compare results obtained here with those obtained by Hutton, use the following values
of the parameters:

a = tank radius = 5.938 inches A
h = water depth = 8.907 inches
Ay @ = 1.84119 ¢ (5.1)
Jl(A11a> = 0.581865 )
Then,
F = 8.53992 A
¢ = 0.99205
Py = 10.987 rad/sec = 1.734 cps
A, = -0.6389 f (5.2)
Al = -A,
Uy = Fy
J

To evalyate K; and K,, use only the first five terms in the infinite series defined by
G; and Gy to approximate the series. In the calculation of G, and G2 the last three
terms are about one percent of the first two terms. Thus,

_5 h
K, = 0.4853 x 10
-4
K, = 0.13707 x 10
( (5.3)
K. = -3.023
5 5
-6
K, = 4.0010 x 10
o




5.1 PLANAR MOTION. Equation (3.60) gives the transformed frequency, y, in terms
of the parameter v. The coefficients in this equation depend on the perturbations given
to the liquid-tank system. Thus,

2
+
A1 Uz 2
4 (5.4)

-1
= - + - 1 +f ———=%
v (Fl Az)" K <Fl + A,

Equation (4.4) gives the values of y which separate stable and unstable regions. The
coefficients in this equation also depend on the perturbations given to the liquid-tank
system.

5.1.1 Case l. Considerwj; = wg = uyg = 0, u; = € cos wt, which is the case con-
sidered by Hutton. Then,

-1 -5 2
Vv = -8.5399y - 0.4853 X 10 'y (5. 5)

The motion is unstable for

-0.1337 <y < 0.06459 (5.6)
where

y = 95.82 when py = -0.1337
and

v = -85.41 when py = 0.06439

3
This case agrees with the result obtained by Hutton .

5.1.2 Case 2

wl = ul = u2 = O
w. = £ cos wt 3 (5.7)
2 h
-1 -5 2
v = 0.6389y - 0.4853 x 10 "y )

The motion is unstable for

-0.0237 < v < 0.0115 (5.8)



where

= ~40.377 when ¥ = -0.0237

~<
!

and

]

¥ 35.988 when y = 0.0115

5.1.3 Case 3

= w =—€—coswt
“y 2  h

-1 -6 2
v = 0.6389y - 0.9706 x 10 v
The motion is unstable for
-0.1863 < v < 0.1934

where

-3.43 when v = -0.1863

~
]

and

3.30 when p = 0.1934

]

y

5.1.4 Case 4

€
wl —Ecoswt
wz =u2 =90
u = cos wt
1 € w

v

The motion is unstable for

-95.735 <V < 5.662

-1 -5 2
-8.5399 y - 0.488 x 10 5'y

(5.9)

(5.10)

(5.11)

(5.12)



where

~-1,508 when v = -5.735

<
il

and

i\

y = 1.489 when y = 5.662

5.1.5 Case 5

wl = u2 =0
w2 = %coswt
= o t
u1 € COS W
-1 -5
v = -7.901y - 0.4853 x 10

The motion is unstable for

-0.1269 < v < 0.06133

where

93.37 when v = -0,1269

and

-83.23 when p = 0.06133

v

5.1.6 Case 6

W, = w =

Ecos t
1 2  h w

n

v

The motion is unstable for

-4.712 < p < 4,834

2

Y

-1 -5
-7.9010y = - 1,144 x 10 5

5~4

2

(5.13)

(5.14)

(5.15)

(5.16)



where

1.655 when p = -4.773

<
i

and

5% -1.634 when p = 4.834

5.1.7 Case 7

=u =0
Wy 1
w =icoswt
1 h

= os wt
u2 € COS W

The results are the same as in Case 5 (by symmetry).

5.1.8 Case 8

= = 0
Wy Y
w_ = £ cos wt
2 h
= wt
u2 € COS

The results are the same as Case 4 (by symmetry).

Cases 1 and 2, according to (2), should not differ. However, it is seen that the unstable
region for Case 2 is much smaller than the unstable region for Case 1, indicating that,
at least for stability considerations, rotational oscillations about x, are not equivalent
to translational oscillations in the x; direction. Also note from Case 5 that the unstable
region is slightly smaller but nearly equivalent to the unstable region in Case 1. Here
the rotational and translational motions are taking place in the same plane. The rota-
tional motion thus has a much smaller effect on the free-surface motion than does the
translational motion, even to the extent that the combination is essentially not different
than the situation for translation alone.

Cases 4 and 8 consider the combination of rotational motion and translational motion in
planes perpendicular to one another. From (5.12) the region of unstable motion in
these cases is much greater than any of the other cases considered.



5.2 NONPILANAR MOTION

5.2.1 Casel

u1 = ¢ cos wt

The quartic equation for this case is

4 2
+ (M + + =
(Mg M e MM = 0
where
d34 d13
M_ = M
3 I
d
24 d12
d13 d12
M5 = , M
d12 d13

and the dij 's are defined in (4.6) and (4. 7).

The transformed frequency, v, is

K
1 -
y=—(F +A>——'y + RK ¥
2 4
2
For this case,
A =0
2
R =1
F1 = 8.53992
-1 -6 2
v = -3.0235y + 4.001 x 10 6'y

5-6

12

24

24

d34

13
21

21

d
24

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)



The generalized coordinates fi for this case are

= A
f1 oY
f, = f; = 0 b (5.22)
2.2, _F_l -1
2

Since f4 must be real, ff > 0. Thus, y cannot be in the range

3 F1 3
(-85.41)" = -=—= < 3" < 0 (5.23)
K
2
1 + :
Evaluate M3 M4 and M5 M6
-1
M, + M, = 7.5148 x 10 O'y(y3 + 3.5699 x 105) (5. 24)
-1 -1
M5M6 = 2.5677 X 10 5')/ ('y3 + 6.2305 % 105)(3/3 +3.7784 x 105) (5.25)
. Lo 2
Consider (5.17) as a quadratic in ) :
(2)2+M+M)(2+MM=0 (5.26)
u ( 3 4 )‘) 56 )
It
3
4°<-6.2305 x 10°
or
v < -85.41
M3 + M4 > 0
M M 0
576 "

Thus, by Descartes' rule of signs there is one positive real root of (5.26). This corre-
sponds to a region of unstable motion. The case -6.2305 x 109 < y3 < 0 is dealt with
in (5.23).



To examine stability for v > 0, compute the discriminant of (5.26):

10 3

1 -
2079 + 361.4 x 10 4‘)/6 + 572.5 x 10 v

A= 52.99 x 10

_241.75% 107° (5.27)
. 20 3 N
Set A = 0, multiply by 10 ', and letg = % to obtain

3 5 2 10 1
52.990 + 36.14 x 10 o + 572.5 X 10 ¢ - 241.75 x 10 . 0 (5.28)

The only positive real root of (5.28) corresponds toy = 64.47. Thus for 0 <y < 64.47,
the roots of (5.26) are complex. Ify >0, M3 + M4 and M5 M6 are both positive, Thus

by Descartes' rule of signs there is no positive real root of Equation 5.17. Replace
2 by -@ in (5.26) to obtain

2
—M+M)+MM=O i
@ (3 4% 56 (5.29)

Thus by Descartes' rule of sign there exist either two positive real roots or no positive
real roots of (5.29). If y > 64,47, the roots of (5.29) are real. Hence for y > 64.47,
Re (y) < 0, and this relation corresponds to stable motion.
In summary, the steady-state nonplanar motion is stable for
64.47 < ¥y <
] (5.30)

-0.03027T <y <
and is unstable for
0 <y <64.47
(5.31)
—o <y < -0.03027
-~ <y < -85.41

(5.32)

0.06459 < y <
The solution does not exist when

-85.41 <y < 0

- < VY < 0,06459

since then ff < 0.



This motion is stable for a small range of driving frequencies, w, which includes the
first natural frequency, pjj. This condition can be seen from the range of transformed
frequencies, v, given by (5. 30).

The results have agreed with those obtained by Hutton3.

5.2.2 Case 2

w, = cos wt

£
2 h

Proceeding as in Case 1, with A1 = U2 = F1 = 0 and A2 = -0,6389, the quartic equa-
tion to be examined is

4 2 B
AT+ (M3 +M4>x + M M = 0 (5. 33)

where Mg, My, Mg, and Mg are defined by (5.18) and (5.19). Here the dij's have dif-
ferent values than in Case 1.

The transformed frequency, v, is

1 -1 2
= ..A _— +
oK Y K4‘y (5. 34)
2
or
-1 -6 2
= 0.2262y + 4.001 x 10 vy (5. 35)

The generalized coordinates for this case are

N
fl—-y
f. =f =0 .
) 3 } (5. 36)
2 2 A2 -1
f,=v *—v

4

2 -

2
Since f4 must be real, f4 > 0. Thus, vy cannot lie in the range
A

3 2
0 <y < K (5.37)
2



where A2 < 0. This restriction gives

0 < vy 35.8
(5. 38)
0.01047 <y < w
2
Regard (5.33) as a quadratic in A and examine the roots of
(A2)2+(M +M>A2 +M_M, =0 5.39
3 4 5 6 (5.39)
This gives the following regions of unstable and stable motion, respectively:
—o < y<0and -» < Y < ® (5.40)
35.8 < vy < » and 0.01047 < py < « (5.41)

This motion is not stable about the first natural frequency, as opposed to the situation
in Case 1.

5.2.3 Case 3

w1=0
w =£cos t
2~ h w
u1=€coswt
u2=0

The quartic equation for this case is (5.17) with Mg, My, Mg, and Mg given by (5. 18)
and (5.19). The dij 's are evaluated from (4.6) and (4.7), with

A1=U2=O

Q=20
R =1

The transformed frequency, y, is

2

-1 -6
v = -2.797y  + 4.001 x 10 y (5.42)
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The generalized coordinates are

= N
fl v
= f = e
f, = f, =0 | (5.43)
2.2, (F1+Az) -1
4 7 K Y
2 y

2
Since f4 is real, f4 > 0. Thus, v cannot lie in the range

P+ A) .
_<K—> < %2 <0 (5. 44)

2

Thus, the solution does not exist for

-75.6 < y < 0
(5. 45)
-o < p < 0.0597
The regions of unstable motion are
-® < y<-8,31 and 0.0613 < YV < = (5.46)
0 <y < 62.58 and -o» < y < -0.0399 (5.47)
The region of stable motion is
62.58 < y < » and -0.0399 < p < (5.48)

Note the similarity between Cases 1 and 3 with regard to the stability of the nonplanar
motion. The rotational motion has a much smaller effect on the stability of the free-
surface motion than does the translational motion, even to the extent that the combina-
tion is essentially not different than the situation for translation alone.

In all cases considered for the stability of nonplanar motion, there is a region of v for
which it is possible to have both stable planar motion and stable nonplanar motion.

5.2.4 Case 4



w, = cos wt

£
1 h

u1 = ¢ cos wt

The quartic equation for the determination of the allowable values of X is

2
A4 + M) + N =0
where
dll d12 d11 d12
M = + +
d21 d22 d32 d33
d d
22 d23 22 d23
+ + +
d
d32 d33 43 d44

and N is the determinant of the coefficient matrix in (4.2) with A

The transformed frequency, v, is

-1 -6 2
v = -3.0235y + 4.024 x 10 vy
and the generalized coordinates are
fl =y
1
2 -1] 2
f2 = -0.0748 |y + 6.24 X 105~/
f_ = 0.0748
3 y
2 2 5 -1
f4 =y +6.24 x 10 vy

2
Since f4 is real, f4 > 0. Thus, vy cannot lie in the range

-85.41 < vy < Oand 0.06459 <y < o

5-12

11

d
43

12

44

34

44

(5.49)

(5. 50)

(5.51)

(5. 52)

(5.53)

(5. 54)




The motion is unstable for
-—o < y < -85.41 and 0.06459 < p < (5.55)
59.1 <« y < » and -0.0371 < y < = (5. 56)
The motion is stable for
31.6 < y < 59.1 and -0.0915 < p < -0.0371 (5.57)

This case, as in the planar motion, has the largest region of unstable motion,
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SECTION 6
CONCLUSION

This paper considers the irrotational motion of an incompressible, inviscid fluid con-
tained in a partially filled tank. The tank is subjected to both transverse and rotational
vibrations whose frequencies are near the first natural frequency of small free-surface
oscillations. The analysis was performed using a method originally suggested by
Hutton3, retaining higher-order terms in the free-surface dynamic and kinematic bound-
ary conditions. The theoretical investigation predicts the forcing frequency ranges, for
various combinations of rotational and translational motion, over which there are stable,
steady-state, harmonic, planar and nonplanar motions. The least stable case occurs
when a combination of motions occurs in planes perpendicular to one another. This
condition substantiates the findings of Hutton in that the mechanism that apparently
causes sloshing in the unstable regions is a nonlinear coupling of the fluid motions par-
allel with and perpendicular to the plane in which the translational motion is taking

place.
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APPENDIX A

In the sloshing problem being considered, the free-surface height, 7, is an unknown

which may be eliminated by replacing (3.24) and (3.25) by a single equation which does
not contain 7. Solving (3.24) for 7, one obtains

an = T(r, 8, @, 6, 1), t) (A.1)

where

1 . . .
o I‘(r, 8, n(r, 6, t), t) = + [oz - rwl sin 8 + rwz cos B - w2u1

2 2 .
+ + i + + - - i
WUy ¥ waw, T sin ] Wg W, T COS 6]/(w1 wz) [a rw, sing

. 2
+ rwzcose - wzul + wluz + w3w2rsin9 +w3wlrcosel

o2
2 2v|1{ 2 g 2 ) . P

+ 2 + — + —2 4+ - + . + w. —
(“’1 wz)’zé’r 2 ‘bz) Yy *uyreosh +u,rsing Uy,

2

u

+-r2( 2sinze + 2 052 ) + 2( + —3 (r ing cosf 3
wl wzc (] qbz 2) wls rwz s )+ 3

Do o

1
+ W r(u sin@ - u cose) - 3r2 singcos@ + w_y 2 2 + 2)
3T\ 2 W, % 3% (wl “a

and the negative sign in the quadratic formula is chosen so that ¢ remains finite if wy,

W, o:)l, (,.'.)2 are all equal to zero. Equation (A.1) can now be used to obtain the partial
derivatives, Mg Ny and Ng: Thus,

(oz B 1ﬂn)”t - 1-‘t

N

]

"

(a - rn)"e Ty




Multiply (3.25) by (a - T) and use (A.2):

(—4)2 - ug + erzcose - 21'(4_)18_1'11_9) (.oz - I'ﬂ)

1
=T, -T.%, .—<—r—2¢_9_+. w3>_1“9,. onz=mn o (A.3)

The potential functions in (A.3) are evaluated on z = n, and, thus, (A.3) depends upon
n implicitly. However, (3.24) depends upon 7} both explicitly and implicitly. The wave
height, 1, is eliminated between these two equations by first expanding the functions
defined by these two equations in Taylor series about z = 0.

Introduce the notation

3k I
: - i
9P arTagtazlat’

-
a>
H
N

S’

where
m+n+p+s =Kk

The Taylor series of the function defined by (A.3) and (3.24) can then be written in the

form
a
2 2 3 3
+ + =+ =n +... =0 .
o THMT M T ! (A.5)
and
b b
2 2 3 3
+ + — + — + ... = .
bp ¥ oM T grm tEm 0 (A.6)
respectively, where
2
. 3r 2 2 2 2
- _b - _ . _3r- + .
b0 00 b01 uzrsme 5 (wl cos B wz sin 9)
2
2 (r sin@ r cos g +u—3 +3r2 i e+u3
EZ W, w, 2) wlwzsmecos -

- d3rw1sine + u3w2rcose - W w,T sing + w3u2rcose —w3£9



_ _ e sing - 9 ( .
b1 b11 b12 o rwlsme wzrcose gzz rwlsme
U3
- + — ) + - i -
rwzcose 2) w, Uy w3w2rs1n9 w3€9z
-~ w3w1rcose - wlu2
b, = b b + 2+w2 2 (r sing - r cose+u3
2 22 ~ P23 (""1 2) €,2\T¢ Wy 2)
- w3gezz
= - +.
bOO gt ulrcose
€2
1 ) 2
PorT 3\ T2 T 6,
r
. abOO
11 dZ
b = ab01
12 dZ
o P00
00 ot
db
b = M0 gor m,n = 1,2, 3... (A7)
m+1,n+1 Dz

It is evident that the potential functions are of the same order as the wave height, as
can be seen by neglecting the products of ) and £ in (A. 6); then, the first approximation

becomes

—b00 - an =u2rs1n6

or

n

1 . . .
= _E[Et-ulrcose-uzrsn’l 9] (A.8)



With this fact in mind, one can expand the function defined by (A.1) in a binomial expan-
sion and neglect terms of 0(1;4). Here it is assumed that wy, wg, wg, Uy, Uy, Ug, and
their time derivatives are of the same order as the wave height. This assumption gives:

2
8.7m,t) = +'rose+1 2+ib-6—+2+ﬁr5in9+u‘p
T(r, :n’) - wt ul ¢ 2 z‘br I‘2 wZ 2 3"z
2
32 b+ wfens) s, + ) (rysine - v o)
> wlSI wzcs *\bz 2) wl w2 2

. 2 .
+ wsr(ulsme - uzcosﬂ)> - 3r w1w281n60059 + waS]

1 . . . .
+—[—rw sinf + rw cosG] -y, +u,rcos@ + u, rsinfh
o 1 2 t

1 2
0 2 2
1{ 2 8 2\ 3r ( 2 .2 2 2 Us
+ = + — + + — + + —_—
2<‘br 3 !I)Z> 5 (@, sin 8 + w, cos 9) ugd, + >

r

u
3
+ 2 (tbz + ?) (rwl sinf - rw, cose) +wg T (ul sin@ - uy cose)

2 -1
- i + + - + + i
3r wlwzsmecose w3zbe] o [ w,uy w,u, wsr(wzsme

. . -2f1 2 .2 2
+ -+ + i - i
wlcose)][ ¢t ulrcose uzrsmel a [r w, sin ]

2 2. . . .
cos @ - 2r w wzsinecosel [—a‘bt + u, rcosh +u2rsin6]

+ 1r oW 1

2.2
2 1

+ 0(774) (A.9)

Use (A.9) to find I‘r, 1“6
computed. Substitute these values into (A.3) and expand the function defined by the
result in a Taylor series about z = 0. This operation leads to (A.5), where an is
defined below:

,andT. Notethatonz =7, T =T ;theno - T _canbe
t n zZ n

ak= T for k =0,1,2,3...



where
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3%t “’2 ©y g rire 2 ‘b 2 ‘b
u
O “6) - 2x(s, +57) (
+= + -2 + —
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u ing| + 0_sing - 3r 2 inze + w2 o 26 2
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u

w, sine) + 2( z+73) (wzcose - W, sine) - w3(ul sinf@ - uzcose)—u3z,bzr
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6rw1w2s1n9 cos@ w3¢6r o r(wzcose W, sme) ( "brt
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+ + - +
u1 cos @ u2 s1n6) o <w2 cosP wl sme) ( zpt ulrcose
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2 2 2 2 : o '
_ _ . + .
!bzl,bez 3r w, sin@cosf +3 r w, cos@ smﬂ + 2¢pzer(wzcose
u .

3
i - + = ing + - + i
w, s_me) 2r(1,bz > )(wz sin@ w, cos ) Wy r(u1 cos$ u, sme)
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Equation (A.6) is solved for 7:

b b b
S0 (2N s () A 10
n bl Zbln b b 77 (' )

since b2 = 0(n). Substitute (A.10) into (A.5):

b b
aO +al[—b—0- + 0(n3>]+122- —Bﬂ + 0(7)3)] + 0(7’)4) =0
1 1
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2
b b
a0+al<——(l)>+%;%— +0(n4> «e.. =0 (A.11)
1



Compute the indicated multiplication; (A.11) is then

b b
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Us 2 2 .2
+ z(gz + —2-)r01,6 - w3r31’e + 3r w, w, [cos 6 - sin 9] - w3€66+u3€78

-1 . . . . -1 . . ]
+ o ro-1<-§6,c - ulrsmG + uzrcos9> + rcl,e(b00+u2rsme)l

9B mn
- A.13
Bm+l,n+1 3z ( )

In summary, the boundary value problem in terms of the potential function, with the
higher order approximation for the free-surface condition, becomes

0 s r < a
V2¢)(r,6,z,t) = 0 in 0 < 6 < 27 (A. 14)

1N -
-n < zZ < 71j

z’br =0, on r = a
zbz = -ug - erlsine + erzcose, on z = -h
and (A.12).

The frequency of the forcing motion is close to or equal to the first natural frequency.
The neighborhood of resonance considered is for

2
|2- 2‘_0<32> as e~ 0
w - Py € Py
Thus,
< 2
2 3 2
1+ = .
Py € u> w (A.15)
or
< g—>
2 2 3
Py = w\l-ev (A.16)

Here Py is the lowest natural frequency of small, free-surface oscillations;

P, = Vozllltanhkllh (A.17)
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where A 1 corresponds to the first nonzero root of
7 _
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]
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12 nzll [COnCH)‘OnAll “Fhon T (1 C11>190n103

A-12



n n 1Q In+l

1.2
onlos ~ Panlaz Z en 24 2[C1152n>‘11>‘2n "2 %n
2 2 n
)‘11<1 ) cll)]QZnIZnI
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1 2
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3C1112]
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K
10 16

K
20

0y gqddy 1 1 2/%;
I = Z3l——)du = — [ = 3°(—) ar
6 u 1\ du A2 r 1\dr
0 11 0
A..a a
. IILJ?’(dJl)d o L J3<dJ1>dr
7 2"1\du 22 2a1\dr
0 11 0
2
F, = 2 (A.18)
(Alla 1)J1<)‘113)
2F,
Ay = -— (A.19)
Pyl
2F,
AL = — (A.20)
Py b
U, = F, (A.21)
K, = Ko T AK

K 2
= —J|-181 + + + - 121 + 61 + (91 - - 21 )
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4
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