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ABSTRACT 

This paper considers the irrotational motion of an incompressible, inviscid fluid con- 
tained in a partially filled tank. The tank is subjected to both transverse and rotational 
vibrations whose frequencies are near the first natural frequency of small free-surface 
oscillations. Following a method suggested by Hutton3, the analysis is performed re- 
taining higher order terms in the free-surface dynamic and kinematic boundary condi- 
tions. The theoretical investigation predicts the forcing frequency ranges, for various 
combinations of rotational and translational motion, over which there are stable, 
steady-state, harmonic, planar and nonplanar motions. The least stable case occurs 
when a combination of motions occurs in mutually orthogonal planes. 





SECTION 1 

INTRODUCTION 

The linear theory of the small oscillations of a free surface in a gravitational field 
appears in essentially complete form in Lamb’s Hydrodynamicsl. The advent of the 
missile age has stimulated renewed interest in this problem, and in recent years 
numerous papers have been written on specific problems in this area. 

The dynamic response of the liquid propellant in the tanks of a space vehicle can affect 
the stability of the vehicle; this influence can be alleviated in many ways, among which 
are the proper choice of tank form, of tank location, or the introduction of baffles into 
the tank. 

These fluid oscillations, resulting from such sources as perturbation of the trajectory, 
have been shown experimentally to be most critical when the excitation frequency is in 
the region of a natural frequency of lower mode fluid oscillations. 

Eulitz and Glase? have compared experimental results with the previously obtained 
theoretical solutions, which are obtained from a linear boundary value problem. Within 
the framework of linear theory, the free surface of the fluid in a container undergoing 
transverse harmonic vibrations should exhibit a steady-state, planar, harmonic motion 
at all frequencies except resonance. Eulitz and Glaser claimed thorough agreement 
between the experimental results and the linearized theory. 

Hutton3 notes that the free surface of a fluid in a container undergoing transverse har- 
monic vibrations does not necessarily exhibit a steady-state harmonic motion. In fact, 
if the container is excited at a frequency well below the lowest natural frequency, p1I, 
of small, free-surface oscillations, the steady-state fluid motion is harmonic with a 
constant peak wave height and a single nodal diameter perpendicular to the direction of 
excitation. The wave height increases with an increase of the excitation frequency. 
When the excitation frequency is close to but smaller than ~11, the smoothly oscillating 
free surface changes to a violently splashing condition. As the frequency increases, 
this motion continues until a frequency greater than pll is attained. Additional in- 
creases in the excitation frequency reduce the wave height up to the point where the 
cycle begins again as the next resonant frequency is approached. 

Hutton shows that the sloshing motion can be accurately predicted in an inviscid liquid 
if the analysis includes appropriate nonlinear effects. 

The present paper is an extension and generalization of Hutton’s work to include not 
only transverse harmonic oscillations of the container but ASO rotational harmonic 
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oscillations. Again, the appropriate nonlinear effects are included. A comparison is 
made between the two solutions and, in particular, the stability of the nonlinear motion 
is studied. 
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SECTION 2 

DEFINITION OF THE BOUNDARY VALUE PROBLEM 

The problem under consideration is that of a tank, partially filled with a nonviscous, 
incompressible liquid, which is mounted in a system which is moving along a prescribed 
path. Perturbations of the path of the system cause the liquid to oscillate. There exist 
two possible types of motion that should be considered. The first is that of surface waves 
of large amplitudes, possibly of low frequency, which could actually damage the tank 
structure. For the most part this type can be controlled by suitable baffles in the tank. 
The second type, which will be considered here, is that of surface waves of small am- 
plitudes with a frequency near the natural frequency of the control system on the tank, 
i.e., the natural frequency of the liquid-tank configuration. 

Since the tank is in motion along some path, it seems reasonable to refer its motion to 
an inertial coordinate system, for example the earth. However, if any type of measur- 
ing device is attached to the tank, then it measures quantities in terms of a tank-fixed 
reference frame which is moving relative to the inertial system. Thus, it is necessary 
to be able to express the tank-fixed system in terms of the inertial system and vice 
versa. 

Let Yi be an inertial Cartesian coordinate system with origin 0’ and coordinates yi; 
and let Xi be a Cartesian coordinate system moving relative to Yi, with origin 0 and 
coordinates Xi. Then, instantaneously, the position of a particle moving with the Xi 
system can be described in the Yi system by 

‘i 
= Zi + a..x. 

Jl J 

where the summation convention is being used and Latin subscripts take on the values 
1, 2, and 3. In (2. l), E.(t), with components measured in Yi, give the instantaneous 
displacement of 0 relati;e to 0’; and 

measures the instantaneous rotation of xi with respect to yj. Subsequently the follow- 
ing notation will be used: a barred vector has components measured in Yi and an 
unbarred vector has components measured in Xi. 

Since aij are a set of direction cosines, they satisfy, for any t, 

as % = 
6 

ij 
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where 6ij is the Kronecker delta. Denote df/dt by f and take the derivative of (2.3); 
then 

. . 
aik ajk + aikajk = 0 

Define 

. 
0.. 

13 = aa ajk 

Thus, using (2.4) and (2.5), one has 

w.. = a & = -& a =-a 5 z-w 

Jr jk ik jk ik ik jk ij 

(2.4) 

(2.5) 

(2.6) 

That is, Oij is a skew-symmetric second order quantity which can be shown to be a 
second-order tensor. 

A dual vector oi can then be defined such that 

0.. = -c 
9 ijkOk 

where Fijk is the third-order alternating tensor. Thus, from (2.6), 

. 
aikajk = - cijkok P-7) 

where ak is the angular velocity of Xi with respect to Yf measured in Xi. 

The absolute velocity of a particle whose position is described by (2.1) can be found by 
differentiating (2.1) with respect to time. This operation gives 

. 
ii = Z + a 

i 
k + a..x = q 

ji j Jr j i (2.8) 

where qi is the velocity measured in the Yf system. The measuring device fixed on 
the tank measuresqi,where qi is the velocity measured in the Xi system and 

Using (2.8), qi can be written as 

‘i 

. 

kj% + akj%> (2.10) 
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With (2.3), (2.7)) and the fact that ii = aij ej , (2.10) becomes 

qi = ii+ki-cikjwj\ 

or 
. . 

‘i = zi + xi + CijkWj “k 

(2.11) 

(2.12) 

where the skew-symmetric property of the alternating tensor Fijk has been used. 

The next quantity of interest is the absolute acceleration 
. 

a. = 
1 ii (2.13) 

From (2.9)) (2.3) can be written as 

d 
( ) 

dq. 
a. = - a..q. 1 dt JlJ = aji dt 

J+i q 
ji j 

The quantity of interest is ai = aij ij; thus from (2.14), 

or 

dqk 
ak = dt + E ijk*i 5 

(2.16) 

Here it is noted that the velocity qi is a function of not only the time, but also the coor- 
dinates xi, which are also functions of time; thus 

dq. 
“k 

J+a * 
= akiaji dt ki “ji ‘j 

(2.14) 

(2.15) 

ds k a ‘k ask hi 
PC-+-- 

dt at a xi dt 
(2.17) 

From (2.12), 

dx 
i . . 

- = x 
dt i = qi - zi - E.. 1Jk “j \ (2.18) 
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Then (2.18), (2.17), and (2.16) give, finally, 

aqk .a qk 

ak = x +q - ii - c.. 0.x + F 
1Js J s I ijkwiqj 

(2.19) 

In vector form, (2.11) and (2.19) appear as 
. 

;; = 4, +;x;+; (2.20) 

and 

(2.21) 

where i. is the velocity of 0 relative to 0’ 

The Eulerian equations of motion for an incompressible, inviscid fluid are, in the 
inertial system, 

(2.22) 

where Fi is the specific body force, p is the density, and p is the pressure. Since 

‘i = Yi x1’ x2, x3 
( ) 

, 

a% %=a’ =a- ap 
a Yi a\ayi ki a xk 

Transform (2.22) to the tank fixed system using (2.23); then 

1 
a. = F - --..a ;3p 

J j p Jl kia 
“k 

or 

Assuming that the motion is irrotational, there exists a potential, @, such that 

(2.23) 

(2.24) 

(2.25) 

a@ 
ii = -ay 

i 
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The incompressibility assumption implies that 

a 9i 
-co 
ay i 

Equations (2.26) and (2.27) then lead to 

2 a 
( > 

a@ =() -- 
v ' = ayi ayi 

Transform the above to the tank fixed system, noting that 

a yi a\ q -ki ay(: 

Then 

q. = 
J 

aq i 
ax. 

J 
0 (2.30) 

(2.27) 

(2.28) 

(2.29) 

(2.31) 

Thus, the solution of Laplace’s equation furnishes a possible potential function for an 
incompressible, irrotational flow. In order to determine exactly which potential func- 
tion is the solution, certain boundary conditions need to be prescribed. 

Consider a tank of arbitrary shape partially filled with fluid. Assume a constant accel- 
eration is acting along the x3 axis. The surface of the liquid then assumes a planar 
surface normal to this axis, this surface being called the free surface or quiescent 
free surface. The origin of the Xi system is taken at the center of gravity of the accel- 
erating fluid system. 
terized by if and wi, 

The motion of the tank-fixed system Xi relative to Yi, charac- 
are oscillatory motions superimposed on the constant-acceleration 

motion. These motions will induce perturbations or disturbances of the free surface. 
The measuring device traveling with the tank sees only the forcing motions or 
perturbations. 
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In this analysis it will be assumed that the tank is rigid. With this in mind, the bound-- 
ary condition on the wetted surface of the tank must be that the velocity of the liquid 
normal to the tank wall must equal the normal component of velocity of the tank itself. 
Thus, if ui is the unit exterior normal to the tank and qi = - $$- , 

i 

ati 
I 

. 
-ViSFi = Vi zi + c ijkWj “k 1 (2.32) 

where C$ = 0 for a rigid tank. 

There are two conditions at the free surface. Denoting the disturbed free surface by 

rl(“l, 5’ t) and the unit normal to the quiescent free surface by ni, the kinematic con- 
dition that a particle of fluid which travels with the free surface as it moves must have 
the same velocity as the free surface itself is given as 

= 
x3 =77 

where x3 is the displacement of a 

0 (2.33) 

particle in the x3 direction, and, as in (2.17), 

d a 
z = at + 

aX a -- 
at a\ 

Expanding (2.33) and using (2.34) and (2.12) 

87) +%;L 

at ax, 1 
+ATLjr 

. 

ax, 2 = ‘3 
-z 3 - ‘3jkWj\’ OnX3 = q (2.35) 

(2.34) 

But since nl = n2 = 0 and n3 = 1, the right hand side of (2.35) can be written as 

‘i - ii - CF ijkWj \)ni 

Thus (2.35) becomes 

. 

‘i 
- zi - F ijkaj% nis On x3 = 7 (2.36) 

The second condition at the free surface is a dynamic one which states that the pressure 
at the free surface of the fluid must equal the ambient pressure. To find the form of 
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this boundary condition it is necessary to integrate the equations of motion. Substitute 
(2.19) into (2.25); the equations of motion become 

aqk aqk 
at +F qi - ii - f its Wt xs 1 +c ijk Wi ‘j 

(2.37) 

If the only specific body force is that due to the gravitational field in which the tank sys- 
tem is moving, (2.37) can be integrated directly: 

y= -[ cm3 + ; (cli - ii), - (FijkW jXk)cli - g] (2. 38) 

where p, is the ambient pressure and cy is the magnitude of the acceleration of the tank 
system. It is assumed here that p. is a constant. Thus, the second boundary condition 
at the free surface is 

ati a = w +‘C ijk (2.39) 

In summary, the mathematical description of the motion of an incompressible, irrota- 
tional fluid confined in a moving, partially filled tank subject to translational and 
rotational perturbations is 

V2@ = 0 

-v 22 
I 

. 

iax 
i 

= vi Zi + c ijkWj “k ] 

on the wetted surface, where vi is the unit exterior normal to the tank; 

a77 +a~;,= aQ+i 
at axii 

-- 
( ax, i +C ijkuj\) ni, on x3 = 77 

where ni is the normal to the free surface; and 

aa 
at = Q7) +i(e + ii)’ + cijktij\E, onx3 = 7 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

If the free surface oscillations are sufficiently small, terms of second order in the 
velocities can be neglected. Then (2.40) to (2.43) become 

v2r$ = 0 (2. la) 
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-v a@ - =v 
iax 

i 
i I 

. 
zi + c.. rJkwjxk]’ On ‘a 

where S, is the wetted surface. 

ijkuj% ni, on x3 = q 

(2.2a) 

a@ 
at = Qqyonx3 = q 

The last two equations can be combined into a single condition: 

(2.4a) 

n ., onx 1 3 =rl (2. 5a) 

(2.3a) 

If is is assumed that Zi and Wj can furthermore be represented as harmonic oscillations, 

i 
i 

= zmeipt 
i 

0. (0) eq?t = 0. 1 1 

then it may be assumed that 

g (xi, t) = $( xi)@ 

The problem then reduces to 

v2ri, = 0 

-v a+ - = Vi ZiO) + < 
i ax 

i I ijk wj') xJ , on So 

-6 @= -(-j$ -I- Zi”) + cijkw:o) 
i 4 

ni, on x3 = fl 

(2. Sa) 

(2.7a) 

(2. 8a) 

(2.9a) 

(2.10a) 

The solution to (2.8a) through (2.10a) can always be obtained if the tank is a prismatic 
cylinder with x3 parallel to a generator and with cross section such that V2 9 is separa- 
ble in the appropriate three-dimensional coordinate system. 
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SECTION 3 

NONLINEAR SLOSBING IN A CIRCUIJ%R CYLINDRICAL TANK 

The natural course here is to express the problem in terms of cylindrical polar coor- 
dinates (r, 8, z). Before doing this, consider (2.41); there exist two segments of 
wetted surface: the side of the tank and the bottom of the tank. Considering the side 
first, the normal Vi has the following components: 

*1 = cos 6 

v2 
= sin 8 

v3 = 0 

(3.1) 

Thus, (2.41) becomes 

a@ 
-vl =I 

.- v 25 = vlil + v2z2 + VIEljkW j\ + V2CZjkWj\ 
2 ax, 

(3.2) 

On the bottom of the tank the normal Vi has the components 

5 = 0 

v2 = 
0 

v3 = 
-1 

Thus, (2.41) becomes 

3 = -k 
ax3 

3 - ‘3jkvxk 

(3.3) 

(3.4) 

Note that 2, is absent in (3.2) and that w3 is absent in (3.4). This condition will in fact 
be the case for any cylindrical tank whose generators are parallel to the x3 axis and is 
not merely a peculiarity of the circular-cylindrical tank. 

In the following, (2.40) through (2.43) will be transformed into cylindrical polar coor- 
dinates . So far all the quantities in these equations have been measured with respect 
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-. - 

to the tank-fixed rectangular Cartesian coordinate system. These quantities may also 
be expressed in a tank-fixed, cylindrical, polar coordinate system. In doing so, it is 
also convenient to shift the origin from the center of gravity of the fluid to the geometric 
center of the quiescent free surface. Let 

x1 =X 

x2 = Y 

x3 = z 

and use the usual transformation equations to cylindrical polar coordinates 

X = r cos 8 

y = r sin 8 

Z = z 

Then (2.40) becomes 

v2qj = - a26 + 1 ad + 1 a2Q a2$ -- 
ar2 

+--0 rar r2 a02 az2 

Let 

bi = E.. a.\ 
1Jk J 

bl 
= w2z - W3rsine 

b2 = a3 r co.5 8 - cd1 z 

b3 
= WJrsine - 

Y2 
r cos 0 

Denote the quantity Zi by ui; (3.2) and (3.4) become, respectively, 

w = u 
ar -1 

cos8 - u2sinf3 - zw2cos6 + Z~~S~II~ 

a8 - = -u az 3 - oJr sin8 + w2r case 
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It may be noted in (3.8) that a3 is absent. This is only true for a circular 
cylinder. TO see this, consider the last term, Vi cijk Oj xh in (2.41). In vector form 
this is 

V G-43) = 2. (;;;XJ) (3.10) 

where 

5 = (r case, r sine, z). 

On the side of the circuJarzylindrica1 tank, vi has components given by (3.1). Thus, 
the third component of p X v is 

tiz3 = r cos 8 sin 8 - r cos 6 sin 8 E 0 (3.11) 

Thus, from (3. lo), a3 is absent in the expression vifijkajxk for a circular cylindrical 
tank. Since this term in (2.9a) is the only place “j enters, ~3 is absent from this 
boundary condition for this special tank configuratron. 

On x3 = TI ( r, 8, t ) , the unit exterior normal has the following components: 

nl 
=n ~0 

2 

I 

(3. 12) 

n3 = 
1 

Therefore, from (2.11)) (2.42)) (3.7)) and (3.12)) one of the boundary conditions at 

z = q becomes 

a@ 
az -“3 

arl a77 as -- - wl r sin 8 + w2 r cos 8 = - - ar a at 

-LsLla@ 
2 aeSij-Ui ( ar7 c0s ear - sin 9 a7j 

-7-G -“2 1 ( 
arl c0se aq sinea-r+ - - 

r ae 1 r 

+ wlq ( sine aq c0se a? ar+ .l" - ae ) ( - 0~7) c0se a7) sin8 av arl -e---w - 
ar r ae > 3 ae (3.13) 

The other boundary condition at z = 77 can be obtained from (2.43) using (3.7) and (3.12): 

g = crq +i[(s,’ +(G-$)2 +($.)2 +~(ulcOse +u2sinB) 

+?* u ( rae 2 
c0se -u 

1 
sine 

) 
+2su +u2 +u2 +u2 

az3 1 2 3 1 
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- olq ( a$ a,sine + c0se a$ 
-Tii r > 

Thus, if the cylindrical tank has radius a, and the original depth of the fluid is given by 

z = -h, the motion of the contained fluid in a circular cylindrical tank is governed by 
the following partial differential equation, subject to the given boundary conditions: 

a2G 1 aa 1 a2G a2Qs o -+--+--++ = 
ar2 r ar r2 atJ2 az2 

for 

OSr <a 

056 SIT 

and 
-h <z <q 

Onr = a 

w 
ar= -ulcOse - u2 sin8 - zw2c0se + zid sin8 1 

On z = -h 

ati = -u 
az 3- 

aIrsine +w2rc0se 

(3.15) 

(3.16) 

(3.17) 

Onz = 77 

a8 av a77 w 1 a77 ati v--u - 
az 3 

aIrsin +w2rc0se = - - -- - --- 
at ar ar r2 ae a9 

-u [ 
a77 sin8 a7j 

1 
cos 8 - - - 

ar r ae I [ 
- + wlq sine a77 : cm a77 

ar r ae I 

-u 
2 

s. e$$+"""8 2 _ o2q cose$-~~ - a32 
r 1 [ 1 P-18) 

+1”” rX5 1 u2 cos 8 - u1 sin 8 1 +* aZU3 +l [ 2+u2+u2 Z"i 2 3 1 
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+ 027) [ 
w 1 a@ arcOse-- --sine r ae 1 a0 afa + w3 z + az -r [w, sin8 - w2 c0se] 

1 
asine+ cosea@ -Oiq ar rae 1 (3.19) 

To simplify the problem described, make the following transformation: 

$(r, 8, z, t) = @(r, 8, z, t)+ulrc0se+u2rsinf3-zrwlsin8 

+ z a2 r cos 8 (3.20) 

Equations (3.15) through (3.19) become: 

V2$= 0 (3.21) 

Onr = a 

adJ 0 -z 
ar (3.22) 

Onz = -h 

a+ 
az= -“3 

-2r01sine + 2rti2cos8 

Onz = q 

(3.23) 

3 - in r cos 8 at i - G2r sine + r)rir, 
1 sin8 - qh2r case 

32 2 2 2 
+-r 

2 ( w1 sin 8 + w2 c0s2 8 
> 

a$ + 2 az 
( 

rolsine - 

- 3r2wlw2sinecos8+ u3Wlrsini3 - u3u2rc0s6 

and 

+ q&J u + qw3w2rsin0 + u103rsin8 + 0 9 - 
12 3 ae 

2 
2 

+W 
> 

+ “3 
2 2 

u3 
r*2CoSe +5- ) 

-qw2u1 - u2u3rc0se 

+-qti3Wl rcose (3.24) 

a0 
-az - u3 +2rw2cose 1 - 2rW1sine = - a77 at - -- a77 ar a$ ar - - 2 - ww -- ae ae 0 3 

r 
2 (3.25) 
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The free surface q is one of the unknowns, but it may be eliminated between (3.24) and 
(3.25) as shown in Appendix A. Equations (3.24) and 3.25) may thus be replaced by 
(A. 12): 

a b 
11 00 

a b 
11 01 

a b 
+12+ 

a b b 
2 

11 11 +a 01 00 
a b 

22 00 a00 - - Ly + a02 - + cy CY 2 

a 2cx2 

+B +B 
-1. 

11 12 u2rsinQ 
-2 

+o ro, u2 r sin 8 

- bllu2r sin 8 + r& b 
3 2 2 

1 00 
sin2 8 + -2 r w cos2 

2 
g 

+ 2trr(u3 - ul) - 3r2wlw2 sin 8 cos 8 f 2u3r01 f- u1 a3 r sin 8 

+ w3f,])- B22(ae1[boo + fi2r sine] - ad2[bll - rirl][boO + u2rsin8] 

322 sin 2 01 + -r w 2 1 8 322 +;r 0 2 cos2 8 + 5, r(u3 - ol) 

- 3r2alW2 sin@ c0se + 2u3ral + u1u3rsine + w 5 
3 8 

0 

-1 
+ al2QI ti2 r sin 8 c B230 -1 

I 
b -2 + 00 ti2 r sin 8 I 

2b00u2rsine 

where 

+ ii r2 sin’ 8 +U2rsin812 + O(u4) = 0 (A. 12) 

5, = -$$ (1; 8, 0, t) 

5, = 2 (03, 0, t) 

(r,e , 0, t) 
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a-., b.., and B.. are functions of the potential $I and its partial derivatives, all evaluated 
aiJz lJO (see &pendix A); and 

5 = w2cose - w1 sine 

This replacement leads to the boundary value problem consisting of (3.21), (3.22), (3.23)) 
and (A. 12), which involves only the potential function I/J and the prescribed tank dis- 
placements. The tank displacements are assumed to be 

ei (t) = ei sin 0 t 
, (3.26) 

i = 1, 2, 3 
J 

with ~0’ and 6: “small” and w close to or equal to the lowest natural frequency pll 
given by - 

where X 
11 

is the first non-zero root of 

Here the xi (t) correspond to translational motion, and the ei (t) correspond to rotational 
motions. Since C: and 0: are small, it can be effectively assumed each set is the same 

cO 
8, = y 

(3.27) 

for all i, say co and eo, respectively; and furthermore it can be assumed that 

The tank velocities ki (t) and ei (t) are 

‘i (t) = c costJjt 

ei @) = + cos Ot 

where 

(3.28) 

(3.29) 
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Following Hutton3, a steady-state harmonic solution to this boundary value problem is 
posed in a perturbation form, in analogy with the Duffing problem 4, 5, 6 in terms of 
the parameter E 

5 $=c 1 $I~ (T, t) cos w t + Xl (r, t) sinw t 1 
2 
j-a A 

+C 1 9 +X 0 (r) +rl, 2 (r)cos2ot 2 (r)sin2wt I 

+ c e,(r) cos3wt + X3(r) sin3Wt 
1 - 1 

where the functions tin and X, for each value of n, each satisfy 

02@ = 0 

22~ 0 onr = a 
ar ’ 

?? = 0 onz = -h 
az ’ 

(3.30) 

(3.31) 

Here r means dependence upon r, 8, and z . A set of normal modes of vibration which 
satisfies (3.31) identically is 

coshX 
A 

mn @) 
cosme + B 

mn @) sin me] Jmbmnr) cosr< L h, 
mn 

(3.32) 

where the J, are Bessel functions of the first kind of order m, for m a positive integer 
or zero; and h,, are an infinite set of numbers for each m obtained from the equation 

JmXmna = 0 
( ) 

(3.33) 

The functions A,,(t) and B,, (t) will be called the generalized coordinates of the mn’th 
mode; they depend only on the time, t. The natural frequency of small, free-surface 
oscillations in the mn’th mode is denoted by pm,. When the tank displacements are 
harmonic motions at a frequency close to or at the lowest natural frequency, pll, 
associated with the J1 mode, the generalized coordinates Al1 and Bll dominate all 
other generalized coordinates. Thus, it is assumed that the first order terms, 91 and 
X1, in (3.9) contain only the J1 mode; thus 91 and X1 are chosen as 
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Q, = [ fl (7) ~0s 8 + f3 (7) sin e] Jl(Xll r) cosh~~$zl L ‘)I 

xl = 1 f2 (7) cos 8 

where the transformations 

+ f4 (7) sin e] Jl(xll r) co~!f$~ z h’l 

1 2 
7 = p3,t 1 (3.36) 

(3.34) 

(3.35) 

2 2 
I 

2 

pll ‘0 1 -v$ 
1 

have been used. In (3.3G), v is a dimensionless measure of frequency and r is a dimen- 
sionless time parameter. A derivation of the above transformation is given in the 
appendix. 

As shown in the appendix, (3.30) is then substituted into (A. 12). Equate the coefficient 

of c ?r to zero: 

2 
IZ 

-P llXl 
sinat = 0, onz = 0 (A. 22) 

Thus (A. 22) is satisfied identically for all tire if G1 and X1 are chosen as in (3.34) and 

(3.35). As can be seen, the coefficient of c3 involves only the J1 mode. 

Q The v‘anishing of the coefficient of c gives 

$ =o oz (A. 27a) 

(A. 27b) 

2 
2 

X 
2 

X Q2 
CUX 22 - rP11X2 = ‘11 lr 

- Gl; + + - $!? 

r 1' 

x1; - 1 

( 

+ 
2 Al; (X12 - $3 

) 

(A. 27~) 
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The functions Go, Q2, and X2 are chosen to satisfy (A. 27a), (A. 27b), and (A. 27~). 
&O is taken to be constant, (A.27a) will be satisfied identically. Choose a2 and X2 

‘2 = 2 - ( 
n=l 

AOnJO ‘Onr 

If 
to be 

+ 
CC 

A A 
AZncos 28 + B (3.37) 

n=l 

and 

X2 = c Con Jo(Aon r) co~~~~~~~, h)l 

m 

CC 

A A 
+ C 

2n 
c0s 28 + D 2n sin 2 8) J2(XZn r) co~~[~~ (“h h)l (3. 38) 

n=l 2n 

where 

Jd(Aona) = JL(XZna) = 0. 

By finding the appropriate generalized coordinates in @2 and X2, (A. 27b) and (A. 27~) 
can be satisfied. These generalized coordinates can be found by introducing (3.34), 
(3.35), (3.37), and (3. 38) into (A. 27b) and (A. 27~) and applying a Fourier-Bessel tech- 
nique using the following orthogonality conditions: 

/ 
arJo(Aomr)Jo(AOnr)ch = 'irn ' n 

0 
I 

fJ ,“(hona), m = n 

J2(AZm r)J2(Xan $dr = 

0 = n 

(3.39) 

(3.40) 

These conditions give the generalized coordinates of the Jo and J2 modes as: 
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iOn = aon ( fl f2 + f3 f4 > 
‘2n =n 2n ( fl f2 - f3 f4 > 

Bzn =52 2n ( fl f4 + f2 5 1 

00 
eon =+(f;+f; - fi” - f3”) 

n 

‘2n =-F-(2 3 
2n f2 + f2 - fl” - f4”) 

6 =!a 2n ( 
f 

2n 
f - fl f3 

2 4 ) 

> 

1 (3.41) 

/ 

where 51 
On mds2 2n 

are constants defined in the appendix. 

a1 1 boo a11b01 + a12boo + all bOObl1 
2 

The terms aoO, a01 - 
a22 boo 

cy , a02 a CY o2 -7’ 

and B11, each contribute to the coefficient of C. The coefficient of F contains sin o t, 
sin 2wt, sin 3wt, cos wt, cos 2wt, and cos 3ot. With this type of approximation it is 
assumed that only the first harmonic terms need vanish. The first harmonic terms 
from aoO and Bll are 

- rcose - rsinelcosot -(z+VXl)sin,,i 

-( 2r 2r 
(y - h cos 13 + h sin 8 cos wt (3.42) 

where plT r cos 8 cos wt corresponds to the translational motion ~1, p1: r sine cos wt 
corresponds to the translational motion u2, 01 cos wt corresponds to the translational 

2r 
motion u3, h -cos 8 cos ot corresponds to the rotational motion ~2, and y sin 8 coswt 

corresponds to the rotational motion al. 

The first harmonic terms from aol - 
a11boo 

are ~ 

‘11 
I 

‘lrX2r - XlrS2r + 4 (%eX2fj - xle@2e) - ‘19 Ccl: - ) ( 1 x1 o2 - @,X2 > 
r 

VL(% x2z - xl@2z) + &Xzzz - x1@2zz )I cos ot 
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- ‘11 
I 

XlrX2r + ’ +‘x x 
lr’2r r2 ( ie 28 + @i&2e) 

+ 4TI; - 9k2 + V2> - Wll(xlx2z + V2z) 

+;xx ( 1 222 + V2zz sin wt )I 
Similarly, there are first harmonic terms from ao2 - 

all bO1 - al2 b00 

2 CY 
2a11b00b11 + a22boo 

+ 
2cY2 

which because of their length are not written out here. 

(3.43) 

The equation obtained by setting the first harmonic terms of the coefficient of c equal to 
zero is now satisfied in a Rayleigh-Ritz, or averaged, sense by multiplying the equa- 
tion by 

Jl 51 ( 

integrating over the free surface, 0 I r < a, 0 < 8 $ 27, and using the known results 

a f- 

r rdrde (3.44) 

JJ r2 sin 8 cos 8 Jl 

0 0 

[ 1’ r2 [ z:/ Jl(Xllr)drde =z J1(Alla) 

0 0 

The contributions from aoO + B1 are 

a 2lr 

(3.45) 

(3.46) 

(3.47) 

JJ ( -1-B 
a00 11 > 

COSBJ x 1 
( > 

Ilr rdrd@= 

0 b 
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‘1” “11’) d ( (2 - Vfl) - [~Jl(Alla~ ““)cos& 

vf 

,I 
2 

sin wt 

a00 
+B rdrde = nplt 

0 0 

(3.48) 

(3.49) 

The contributions from aol - a11 boo 
cl! 

= B2 are 

a 27-r 

11 + f4(f2f3 
0 0 

- flf4 
) I 

l2 cos wt + qp 11 f2(fj fj)Gl - f3(f2f3 - fl f4 i2 sin ot 
I ,I. (3.50) 

11 fj)Gl - f2(f2f3 
0 0 

- flf4 
’ I 

G2 cosot +7rp fj)il + fl(f2f3 - fl f4 G2 sin wt ) 1 (3.51) 
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wheref.f = f: +ff +ft +f 
J j 

f, Gl,and i2 are constants defined in the appendix. 

The contributions from 

allbO1 - a12b00 + 
2a b b +a b 

2. 
B3 11 00 11 22 00 = a 02 - CY 

2cY 
2 

are 
a 27r 

2 
A 

- flf4 
( ) 
fj fj Hl 

a 2v 

JJ B3 sin 8 Jl Allr rdrdi3 = 
( ) 

0 0 

2 

2 
pll A 

4 
f 

A 

f3 f2 f3 - fl f4 H2 sin at ) 1 (3.52) 

2 

-1 
- flf4 H2 cos ot - ) 1 f4(fj fj)il + fl(f2f3 - fl f4)H2]sin ot (3.53) 

A A 
where HI and H2 are constants defined in the appendix. 

From the Rayleigh-Ritz process two ordinary differential equations are obtained. Set- 
ting the coefficients of sin wt and cos wt equal to zero in each of these equations results 
in four, first-order, nonlinear, ordinary differential equations. 

This system is 

df 
i 

-= Gi 
dr 

where 

Gl = -H,2 

G2=R,1 
G3= -H,4 

G4 = H 
,3 

(3.54) 

(3.55) 
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and 

H = Fl + 

2 (3.56) 

where 

H,i = $- (3.57) 
i 

The constants FJ, KJ, 
(A.20), and (A.21). 

K2, AJ, A2, U2 are defined in the appendix by (A. 18)) (A. 19)) 

A steady-state harmonic solution to the boundary value problem is given by the roots of 
the four equations 

f,f,f 2 4 4 
= 0, i = 1, 2, 3, 4 (3. 58) 

The roots of (3.58) are functions of fi where the fi are independent of the time 7. The 
form of (3.54) is similar to the equations derived by Miles7 for the undamped spherical 
pendulum. 

There are two solutions to (3.58). The first, called planar motion, is 

fl =Y 

f3 = yQ 

I 

(3.59) 

f2 = f4 = 0 

where y is a parameter independent of time. The transformed frequency is 

-1 
u = Py - KlRy2 (3.60) 
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where 

P= - Fl+A 
( 2 ) 

Q= 
Al + u2 

Fl +A2 

R=1+Q2 

The second solution to (3.58), called nonplanar motion, is 

Q=-LQ 

f3 = YQ 

-1 
f4” = y2 - Py = L2 

K2R 

with 

lJ = -y-lb3 + $) +RKqy2 

K 
K 

1 =- F 
3 Kl 

2 

K 
4 

=K2-2K 
1 

I (3.61) 

I 
(3.62) 

(3.63) 

It is seen that the ronplanar solution is real and, hence, exists for y > 0 when 
P 

y3 - K2R 
- > 0, and for y < 0 when y3 -&<O. 

The names planar and nonplanar motion are used in analogy with Miles’ terminology for 
the spherical pendulum. It is not to be implied that the motion of the free surface is 
necessarily described by the names given to the two solutions of (3.58). 
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SECTION 4 

STABILITY OF THE STEADY-STATE HARMONIC SOLUTION 

To determine the stability of the motion corresponding to a given steady-state solution, 
consider the perturbed solution 

fi(r) = f.(O) + c exT 
1 i 

l’il << 1 

i = 1, 2, 3, 4 

(4.1) 

The fi(O’ are constants corresponding to the steady-state amplitudes of the harmonic 
solutions of (3.54). The corresponding steady-state solution will be stable if Re(X) I 0 
and unstable if Re(X) > 0. 

Substitute (4.1) into (3.54), neglect products of the Ci’S, and use the fact that the fi(‘) 
are solutions of (3.58); the following set of homogeneous algebraic equations are 
obtained: 

dll +x d12 - d 
13 

d 
14 

d 
21 

d 
22 -’ d23 

d 
24 

d 
31 

d 
32 

d 
33 +A 

d 
34 

d 
41 

d 
42 

d 
43 d44-X 

where 

d 
11 

= 2 K1 1;‘) fz(‘) + K2 f,(O) f (O) 
4 

d 
12 

= v i- Kl(fj(‘)fj(‘)) + 2 Kl fz(“)2 

d 
13 

= 2 Kl fz(‘) f to) + K [f (‘If (‘) - 
3 21 4 

4-l 

c1 

c2 

c3 

c4 

= 

- K2f3(0)2 

2 f (0) f (0) 
2 3 1 

- 
0 

0 

0 

0 
. 

(4.2) 



d 
14 

= 2KlfZ(‘)fq(‘) + K2fl(‘)f3(‘) 

d 
21 

= v + Kl(f;‘)f;‘)) + 2 Kl f,(0)2 - K2fdo) 

d 
22 = dll 

d 
23 

= 2Klfl(o)f3(0) + K2fz(‘)f;‘) 

d 
24 

= 2 Kl f1(‘) f;‘) + K2 [f2(‘)f (O) - 2 fl(‘)f4(‘)] 
3 

d 
31 = d24 

d 
32 = d14 

d 
33 

= 2Klf3(‘)fq(0) + K2f1(‘)fZ(‘) 

d - v + Kl[fj(0)f;‘)] +2Klfq(” - K2fjo) 
34 - 

d 41 = d 23 

d 
42 = d13 

d 
43 

= u + Kljfj(‘)f;‘)) + 2 Kl f3(o)2 - K2f2(o)2 

d 
44 = d33 

The solutions of (4.2) will be nontrivial only if the determinant of the coefficient matrix 
is zero. This condition gives an equation for the allowable values of X. 

4.1 STABILITY OF PLANAR MOTION. Substituting (3.59) into the expressions for 
the dij ‘s and expanding the determinant of the coefficient matrix in (4.2), one obtains 
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x4 +x”(M; + M2’ +2M 3) + M;M; + 4K,2y4Q2M4 - K;Q2y4M5 + I$= 0 (4.3) 

where 

I lJ +KIY “(1 + 3Q2) 

M f = 
2 

0 

K2r2Q 

u + y2 ( Kl R 

0 

M = 
3 

0 

0 

2K,r2Q 

Y t- y2(KlR 

M = 
4 

y +y2KlR- 
( 

u + Kly2(3 + 

K2Q ) 

Q2) 
M = 

5 

0 u + Kly2(l + 3Q2 ) 

0 

The boundary between stable and unstable planar motion corresponds to A = 0. Set 

X = 0 in (4.3) and substitute for v from (3.60) : 

- N3Pyg + N2P2y6 +P3Nly3+P4 = 0 
I 

(4.4) 
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where 
Nl = -K4 + 2KlQ2 - K2Q 

N2 = K2K4Q - K2Q2(K2 + 2Kl) - 2KlK2(1 + Q3) 

1 

N3 
= 2KlK;(Q4 - Q3 + Q2 - Q) 

N, = 

(4.5) 

One possible solution to (4.4) is y = *m. Since y is actually an amplitude this would 
correspond to unstable motion. Let o = y3; then the other possible solution to (4.4) is 

N4u4 - N3 Po3 + N2P202 + P3Nlo + P4 = 0 (4.5) 

This equation can then be solved for o = y3. The solution of (4.5) for various pertur- 
bations is given in Section 5. 

4.2 STABILITY OF NONPLANAR MOTION. Substitute (3.62) in the expressions 
for the dij ‘s: 

d 
11 = yQK4L 

-1 
KIPy 

d 
12 

=v+y2 (2KlR - Q2K4) - K R (1 + 3Q2) 
2 

d = 
13 Ly(K4Q2 + K2R 

) 

d 
14 

d 
21 

d 
22 = dll 

d23 = -Q(K4; - $,) 
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r’- 

d = 
24 -YL(K4 + 39 

d 
31 = d24 

d 
32 = d14 

d = -dll 
33 

d 
34 

d 
41 = d23 

d = d 
42 13 

d 
43 

= v+y2 (2K1 R - K4Q2) - Py-’ 

d 
44 = d33 

Substitute the value of v given by (3.63) into the expressions for d12, dgl, d34, d43: 

2 -1 

d z2 
2K1PQ Y 

12 Y (2y + K4) - 
K2 R 

-1 
d = 

21 
y2(2K1R + K4Q2) + q 

2KlPY 
-1 

d = 
34 y2(2KlR + K4Q2) - 

K2R 

2 -1 
d = PQ Y 

43 y2(2K1R + K4) + R 

Substitute the above values of the dij ‘s into (4.2) and set the determinant of the coeffi- 
cient matrix equal to zero to give a fourth-degree polynomial for the determination 
of the parameter A, such that (4.2) has nontrivial solutions. Stability of the 
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steady-state nonplanar solution is determined by examining the roots of this quartic 
equation. The regions of stable and unstable motion are given in Section 5 for various 
perturbations. 

4-6 



I 

SECTION 5 

NUMERICAL EXAMPLE 

To compare results obtained here with those obtained by Hutton, use the following values 
of the parameters: 

a = tank radius = 5.938 inches 

h = water depth = 8.907 inches 

Xlla = 1.84119 

= 0.581865 

Then, 

F = 
1 

8.53992 

< = 0.99205 

pll = 10.987 rad/sec = 1.734 cps 

A = 
2 

-0.6389 

Al 
= -A 

2 

u2 
= F 

1 

(5.1) 

(5 * 2) 

To evalu_ate Kl and K2, use only the first five terms in the ipfinite zeries defined by 
Gl and G2 to approximate the series. In the calculation of Gl and G2 the last three 
terms are about one percent of the first two terms. Thus, 

K = 
1 

K = 
2 

K = 
3 

K = 
4 

0.4853 x 10 
-5 

0.13707 x 10 
-4 

- 3.0235 

4.0010 x 10 
-6 

(5.3) 
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5.1 PLANAR MOTION. Equation (3.60) gives the transformed frequency, TV, in terms 
of the parameter y. The coefficients in this equation depend on the perturbations given 
to the liquid-tank system. Thus, 

v=-F 
( 1 

+A2)y-’ - Rl[l +(;: :::,?]y2 (5.4) 

Equation (4.4) gives the values of y which separate stable and unstable regions. The 
coefficients in this equation also depend on the perturbations given to the liquid-tank 
system. 

5.1.1 Case 1. Consider w 1 = 02 = u2 = 0, Lll = F cos wt, which is the case con- 
sidered by Hutton. Then, 

-1 
v = -8.5399y - 0.4853 x 10-5y2 

The motion is unstable for 

- 0.1337 < v < 0.06459 

where 

and 

y = 95.82 when v = - 0.1337 

y = - 85.41 when v = 0.06439 

This case agrees with the result obtained by Hutton3. 

5.1.2 Case 2 

*1 
= u 

1 
=u =o 

2 

w2 
= + cos wt 

-1 
V = 0.6389y - 0.4853 x 10-5y2 

The motion is unstable for 

-0.0237 < v < 0.0115 (5.8) 

(5.5) 

(5.6) 

(5.7) 
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where 

Y = -40.377 when V = - 0.0237 

and 

y = 35.988 when v = 0.0115 

5.1.3 Case 3 

u1 
=u co 

2 

?l = w2 = + cos (Jjt 

v = 0.6389 y 
-1 

- 0.9706 x 10-6y2 

The motion is unstable for 

- 0.1863 < v < 0.1934 

where 

y = - 3.43 when v = - 0.1863 

and 

y = 3.30 when v = 0.1934 

5.1.4 Case 4 

al h 
= 2 cos iJJt 

u1 
= 6 cos ot 

- 8.5399 y 
-1 

v = -5 2 
-0.488x10 y 

The motion is unstable for 

(5.9) 

(5.10) 

(5.11) 

- 5.735 < V < 5.662 
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where 

Y = -1.508 when v = -5.735 

and 

y = 1.489 when v = 5.662 

5.1.5 Case 5 

*1 
=u =o 

2 

O2 
= ; cos wt 

5 = .f cos ot 
-1 

v = - 7.901 y -5 2 -0.4853~10 y 

The motion is unstable for 

- 0.1269 < V < 0.06133 (5.14) 

where 

y = 93.37 when v = - 0.1269 

and 

Y = -83.23 when v = 0.06133 

5.1.6 Case 6 

u1 
= u 

2 
= f cos &)t 

w 
1 

=w 
2 

= ; cos (JJt 

-1 
v = -7.901oy - 1.144 x 10 -5 2 

y 

The motion is unstable for 

(5.13) 

(5.15) 

-4.772 < v < 4.834 
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where 

y = 1.655 when v = -4.773 

and 

y = -1.634 when v = 4.834 

5.1.7 Case 7 

u2 
= 6 cos ot 

The results are the same as in Case 5 (by symmetry). 

5.1.8 Case 8 

w1 
= u = 0 

1 

“2 h 
= f cos lJJt 

u2 
= E cos ot 

The results are the same as Case 4 (by symmetry). 

Cases 1 and 2, according to (2), should not differ. However, it is seen that the unstable 
region for Case 2 is much smaller than the unstable region for Case 1, indicating that, 
at least for stability considerations, rotational oscillations about x2 are not equivalent 
to translational oscillations in the x1 direction. Also note from Case 5 that the unstable 
region is slightly smaller but nearly equivalent to the unstable region in Case 1. Here 
the rotational and translational motions are taking place in the same plane. The rota- 
tional motion thus has a much smaller effect on the free-surface motion than does the 
translational motion, even to the extent that the combination is essentially not different 
than the situation for translation alone. 

Cases 4 and 8 consider the combination of rotational motion and transIationa1 motion in 
planes perpendicular to one another. From (5.12) the region of unstable motion in 
these cases is much greater than any of the other cases considered. 
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5.2 NONPLANAR MOTION 

5.2.1 Case 1 

*1 =o 2 
=u =(-J 

2 

u1 
= c cos ot 

The quartic equation for this case is 

h4+ M3+M4)X2+M5M6 = 0 
( 

where 

d 
34 d13 

d 
12 

M = = 
3 , 

M 
d d 4 

24 12 
d 

24 

d 
13 

d 
12 

M = 
5 d 

12 
d 

13 

nd and the dij ‘s are defined in (4.6) a; l(4. 7). 

The transformed frequency, u, is 

t M = 
6 

‘2 K 
-1 

v = + RK4y- 

For this case, 

A =0 
2 

R=l 

F = 
1 

8.53992 

3.0235 y 
-1 

11 = - + 4.001 10 
-6 2 

x y 

d 
24 

d 
34 

d 
13 

d 
21 

d 
21 

d 
24 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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The generalized coordinates fi for this case are 

fl =Y 

f2 = f3 = 0 

F 
fZ = r” + $ y-1 

2 

Since f4 must be real, fz > 0. Thus, y cannot be in the range 

F 
(-85.4l)3 = - 2 < y3 < 0 

2 

(5.22) 

(5.23) 

Evaluate M3 + M4 and M M : 
5 6 

M3 + M = 7.5148 x 10 -10 
4 + 3.5699 x lo5 (5.24) 

MM -1 3 = 
5 6 

2.5677 X 10 -15 
y y + 6.2305 x lo5 y3 +3.7784 x lo5 (5.25) 

Consider (5.17) as a quadratic inA2: 

+MM =0 
5 6 

If 

y3<-6.2305 x lo5 

or 

y < -85.41 

M3 + M4 > 0 

M5M6 < 0 

(5.26) 

Thus, by Descartes’ rule of signs there is one positive real root of (5.26). This corre- 
sponds to a region of unstable motion. The case - 6.2305 x lo5 < y3 < 0 is dealt with 
in (5.23). 
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To examine stability for y > 0, compute the discriminant of (5.26): 

A = 52.99 x 1O-2o yg + 361.4 x 1014 y6 + 572.5 x 10-l”y3 

- 241.75 x 10 
-5 

Set A = 0, multiply by 10 20 
, and let CJ = y3 to obtain 

(5.27) 

52.99a3 + 36.14 x IO5 a2 + 572.5 X 10 10 cr - 241.75 X 10 15 = 0 (5.28) 

The only positive real root of (5.28) corresponds to y = 64.47. Thus for 0 < y < 64.47, 
the roots of (5.26) are complex. If y > 0, M3 + M4 and M5M6 are both positive. Thus 
by Descartes’ rule of signs there is no positive real root of Equation 5.17. Replace 
y2 by -CX in (5.26) to obtain 

2 
CY - M~+M~cY+M~M~ = 

> 
0 (5.29) 

Thus by Descartes’ rule of sign there exist either two positive real roots or no positive 
real roots of (5.29). If y > 64.47, the roots of (5.29) are real. Hence for y > 64.47, 
Re (y) zz 0, and this relation corresponds to stable motion. 

In summary, the steady-state nonplanar motion is stable for 

64.47 <y -c m 

- 0.03027 < y < ~0 

and is unstable for 

0 < y < 64.47 

--co <v < -0.03027 

--co < y < -85.41 

0.06459 < v < c~ 

The solution does not exist when 

-85.41 < y < 0 

I (5.30) 

(5.31) 

1 
(5.32) 

-a < v < 0.06459 

since then ft < 0. 
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This motion is stable for a small range of driving frequencies, 0, which includes the 
first natural frequency, p11. This condition can be seen from the range of transformed 
frequencies, v, given by (5.30). 

The results have agreed with those obtained by Hutton’. 

5.2.2 Case 2 

*1 
= u 

1 
=u =(-J 

2 

*2 
= ; cos ot 

Proceeding as in Case 1, with Al = U2 = F1 = 0 and A2 = - 0.6389, the quartic equa- 
tion to be examined is 

X4 + (M3 + M4 X2 > 
+MM =0 

5 6 
(5.33) 

where M3, M4, M5, and M6 are defined by (5.18) and (5.19). Here the dij’s have dif- 
ferent values than in Case 1. 

The transformed frequency, v , is 

(5.34) 

(5.35) 

The generalized coordinates for this case are 

fl =Y 

f2=f =o 
3 

fq2 = y2 
A 

+$Y 
-1 

2 I 

Since f4 must be real, ff > 0. Thus, y cannot lie in the range 

A 
o<y3<-$ 

2 
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where A2 < 0. This restriction gives 

0 < y 35.8 

0.01047 < v < m 

Regard (5.33) as a quadratic in X2 and examine the roots of 

(A”)” + (M3 + M4) A2 + M5M6 = 0 

(5.38) 

(5.39) 

This gives the following regions of unstable and stable motion, respectively: 

--03 < y<O and -m < u < m (5.40) 

35.8 < y < m and 0.01047 < v < CD (5.41) 

This motion is not stable about the first natural frequency, as opposed to the situation 
in Case 1. 

5.2.3 Case 3 

cd1 = 0 

w2 
= $ cos wt 

u1 
= c cos wt 

u2 = 
0 

The quartic equation for this case is (5.17) with M3, M4, M5, and M6 given by (5.18) 
and (5.19). The dij ‘S are evaluated from (4.6) and (4.7), with 

A1 
=u =o 

2 

& = 0 

R=l 

The transformed frequency, V, is 

-1 
-2.797 4.001 10 

-6 2 
v = y + x y (5.42) 
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The generalized coordinates are 

fl =Y 

f2 = f3 = 0 

f2 ( F1 + A -1 
4 

=y2+ K ) 2 
Y 

2 

Since f4 is real, fq2 > 0. Thus, y cannot lie in the range 

F1 + A 
2 

-( ) 

3 
K 

<y -co 
2 

Thus, the solution does not exist for 

-75.6 < y < 0 

-co < v < 0.0597 

(5.43) 

(5.44) 

(5.45) 

The regions of unstable motion are 

-m < y<-8.31 and 0.0613 < v < 03 (5.46) 

0 < y < 62.58 and --co < v < -0.0399 (5.47) 

The region of stable motion is 

62.58 < y < 03 and - 0.0399 < v < m (5.48) 

Note the similarity between Cases 1 and 3 with regard to the stability of the nonplanar 
motion. The rotational motion has a much smaller effect on the stability of the free- 
surface motion than does the translational motion, even to the extent that the combina- 
tion is essentially not different than the situation for translation alone. 

In all cases considered for the stability of nonplanar motion, there is a region of u for 
which it is possible to have both stable planar motion and stable nonplanar motion. 

5.2.4 Case 4 

u2 
= o2 = 0 
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% 
= gcosot 

u1 
= F CO8 wt 

The quartic equation for the determination of the allowable values of X is 

x4 + MA 
2 

+N=O 

where 

M= 

+ 

d 
11 

d 
12 

d 
21 

d 
22 

d 
22 

d 
23 

d 
32 

d 
33 

d 
11 

d 
12 

d 
32 

d 
33 

d 
22 

d 
23 

d 
43 

d 
44 

d 
11 

d 
12 

d 
43 

d 
44 

d 
33 

d 
34 

d 
43 

d 
44 

and N is the determinant of the coefficient matrix in (4.2) with X = 0. 

The transformed frequency, o, is 

-1 
V = -3.0235~ + 4.024 x 10 

-6 2 
y 

and the generalized coordinates are 

fl =Y 
1 

f2 
5 -1-z 

= - 0.0748 1 y” +6.24x 10 y 1 
f 

3 
= 0.0748 y 

f; = y2 + 6.24 x 10 
5 -1 

y 

Since f4 is real, ff > 0. Thus, y cannot lie in the range 

-85.41 < y < Oand 0.06459 < v < 03 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 
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The motion is unstable for 

--03 < y < - 85.41 and 0.06459 c’ v < 03 

59.1 < y < m and - 0.0371 < v < ~0 

The motion is stable for 

(5.55) 

(5.56) 

31.6 < y -C 59.1 and -0.0915 < v < -0.0371 (5.57) 

This case, as in the planar motion, has the largest region of unstable motion. 
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SECTION 6 

CONCLUSION 

This paper considers the irrotational motion of an incompressible, inviscid fluid con- 
tained in a partially filled tank. The tank is subjected to both transverse and rotational 
vibrations whose frequencies are near the first natural frequency of small free-surface 
oscillations. The analysis was performed using a method originally suggested by 
Hutton3, retaining higher-order terms in the free-surface dynamic and kinematic bound- 
ary conditions. The theoretical investigation predicts the forcing frequency ranges, for 
various combinations of rotational and translational motion, over which there are stable, 
steady-state, harmonic, planar and nonplanar motions. The least stable case occurs 
when a combination of motions occurs in planes perpendicular to one another. This 
condition substantiates the findings of Hutton in that the mechanism that apparently 
causes sloshing in the unstable regions is a nonlinear coupling of the fluid motions par- 
allel with and perpendicular to the plane in which the translational motion is taking 
place. 

6-l 



SECTION ‘7 

REFERENCES 

1. Sir Horace Lamb, Hydrodynamics, 6th ed., Dover Publication, New York, 1945. 

2. W. R. Eulitz and R. F. Glaser, Comparative Experimental and Theoretical Con- ___---. _.~- 
siderations on the Mechanism of Fluid Oscillations in Cylindrical Containers, 
U. S. Army Ballistic Missile Agency Reports, MTP-M-S and M-P-61-11, Army 
Ballistic Missile Agency, Huntsville, 1961. 

3. R. E. Hutton, “An Investigation of Resonant, Nonlinear, Nonplanar Free Surface 
Oscillations of a Fluid, ” National Aeronautics and Space Administration Technical 
Note D-1870, 1963. 

4. J. H. Stoker, Nonlinear Vibrations, Interscience Publications, New York, 1950. 

5. Raimond A. Struble, Nonlinear Differential Equations, McGraw-Hill Book Co., Inc., - 
New York, 1962. 

6. Harold T. Davis, Introduction to Nonlinear Differential and Integral Equations, --___-- I.-. -^. --_ 
U. S. Government Printing Office, Washington, D. C., 1960. 

7. John W. Miles, ‘Stability of Forced Oscillations of a Spherical Pendulum, ” 
Quarterly of Applied Mathematics, 20:21-32, 1962. 

7-l 



APPENDIX A 

In the sloshing problem being considered, the free-surface height, n, is an unknown 
which may be eliminated by replacing (3.24) and (3.25) by a single equation which does 
not contain 7. Solving (3.24) for q, one obtains 

cY7) = r (r. 8, q(r, 8, t), t) (A- 1) 
where 

i r(r, 8, q@, 8, t), t) = + 1~2 - rrjl sin 8 + rLj2 cos 8 - w 2 u 1 

+03W2rsin8 +W301rcos8 
I/( 

tif +w 
2 

+u u - 12 2 
) I 

01 - rLjlsine 

+ rLj2cose - 0 
2 

u 
2 1 + YU2 + a3c.d2rsine +0301rcos8 I 

2 

+2w ( 
2 2 

+o 212 )I ( 9 +2+ez #e ) - 1 2 2 r 9 
a@ 

t + Glrcose + i2rsin@ + u 3-G 
r 

u3 2 
+3r2 2 ( wfsin2e $c0s2e ) 2 + + ( 9 

Z 
+ 7 

I( 
ralsine 

u3 
- ra2cose. + 2 

) 

1 

+ td3r ( ulsine - u2c0se > - 3r2WlW2sinecose 
5 2 2 

+ 0 3 $ 8 II/ ( 9 -I- w2 ) 

and the negativesign in the quadratic formula is chosen so that av remains finite if wl, 
w2, cj,, cj, are all equal to zero. Equation (A. 1) can now be used to obtain the partial 
derivatives, qt, qr, andqe. Thus, 

. 

(a - rrl)vt = rt 

(CY - r,)77, = rr 

(a - rq)Tle = r, 

A-l 

(A-2) 



Multiply (3.25) by (a - rt7) and use (A. 2): 

4, - u3 + 2rW2c0se - 2rglsine)o - r,) 

The potential functions in (A. 3) are evaluatedon z = q, and, thus, (A. 3) depends upon 
r) implicitly. However, (3.24) depends upon TJ both explicitly and implicitly. The wave 
height, q , is eliminated between these two equations by first expanding the functions 
defined by these two equations in Taylor series about z = 0. 

Introduce the notation 

ak 

5 = 
G 

rmenzPtS armaenazPatS z = 0 
(A. 4) 

where 

m+n+p+s=k 

The Taylor series of the function defined by (A. 3) and (3.24) can then be written in the 
form 

a2 2 a3 3 
aO 

+alr)+zq +-j--r] +... = 0 

and 

b 

b. + blq + 3~” 

b 
3 3+ 

+T? --* = 
0 

respectively, where 

3r2 
b = -boo - bol - u2rsine - --(w~cos~~ + ui sin2 Q 

0 ) 
2 

u3 
- 2[,(rwlsme - ru2cose + 2) + 3r2wlw2sinecose +: 

(A. 5) 

64.6) 

_ i3ra1sine + u302rcosQ - ulo3r sine + 03u2rcose -W 5 3 e 

A-2 



II 
- 

bl = -b -b12-a, 
11 

+ rLjlsine - ti2rcose - 2[zz(rtilsine 

u3 
- rW2cos@ + T 

) +o u 2 1 - 03W2 rsine -w 5 
3 ez 

- W3tilrcose - 01u2 

u3 
b2 = - b22 - b23 + (a,” + w2) - 2[ZZ(r+sine - rw2cose + ‘z- 

2 ) 

b 
oo= 

-5, + ulrcose 

b 
abOO =- 

11 az 

b 
abO1 =- 

12 az 

abOO hoo- - at 

b 
abmn =- 

m+l, n+l az for m, n = 1, 2, 3 . . . (A. ‘0 

It is evident that the potential functions are of the same order as the wave height, as 
can be seen by neglecting the products of r~ and 5 in (A. 6); then, the first approximation 
becomes 

-b00 - a77 = A, r sin 8 

or 
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With this fact in mind, one can expand the function defined by (A. 1) in a binomial expan- 
sion and neglect terms of 0 (q4). Here it is assumed that wl, 02, 0.1~) ul, u2, u3, and 
their time derivatives are of the same order as the wave height. This assumption gives: 

ti2 
r(rA77,t) = - -a, +Ulrcose + + + + a,” + U2rsin6+u3#, 

r > 

3 r2 f- 
2 ( 

wfsin29 + wlc0s2fj) + 2($1, +;)(ralsin9 - r,2cose)+$ 

+ W3r u1sin9 - u2cos9 - 
( > 

2 
3r ulW2sinecos9 + w3@9 1 

1 
+- - rGl sin9 + rti2 case 

I 

“( ) 

1[ 

-6, + ulrcos9 + u2rsin9 

2 

i G,” + 2 + II,” + $(afsin26 + +0s2e) % 
2 

u3 
+- + u3$z+T 

r 

+ 2 (Qz + z)(rwlsin9 - rwzcosC3) + w3r (ul sin6 - u2c0se) 

2 
- 3r tilW2sin9cos9 + W3G8 + Q, 

-1 

I [ 
-w2u1 + YU2 + 03r 

( 
ti2sine 

+ wlcose )I[ -et + $rcose + U2rsin8 ] - Ey2(r2Lj;sin26 

+ r2~~cos2e - 2r2GlW2sin6cos9 I[ -$, + uIrcos9 +U2rsin9 
I 

+ Wv4) (A* 9) 

Use (A. 9) to find rr, rg, and rt. Note that on z = q, I’ = rz; then o - rtl can be 

computed. Substitute these values into (A. 3) and expand’the function defined by the 
result in a Taylor series about z = 0. This operation leads to (A. 5)) where an is 
defined below: 

for k = 0, 1, 2, 3 . . . 
az z=o 
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where 

0 =-dJz-& 
9, Oet +*iilrc0s8 + 2~4~14.~ + 2- 

r2 
+ wz+zt + u3 h3 

2 

- G, 
( 
arcose $e $ee 

-Ge y)- q:+rr -4 
‘r’,2 

-@z”Gzz+- 
r3 

- wrllrz~, - 2 #r $6 ‘re 

r2 
-2’z~~‘e’+(-u3+2r[u2c0s0 

- w1 sin0 
J)[ 

#e$ez 
CY + 4r9rz + 2 + Q,Q,, - Gtz - 2rGzz 

r 

-cosine 
> 

+ u3Qzz + W3$ez O"! r cj2c0se - klsinf3 
( )( 

$,$ 

'~z+~z~zz)~-~z~-~~zz~2c0s~ -alsinf3)+~~ez - 9,, + - 

+ u3Gzz +Q! 
-1 

r(rjZc0sB-Jlsint3)~tz]-~-1r(&2cosf3-~lsinC3 a+!~~$,, 
,[ 

@e +et + - + Q,QZ, -Q,, 
r2 

+iilrcOse +ii2rsine + 3r2 
( 
al&lsin2e+w & 

- 2(izt+$)r@2c0sB -wl sine) - 2rGz+ ~)(32cos0 - wl sin:, 

c0s2e 
1 

+ cj,r 
( 
ulsinO -u2cos8 

> ( 
+ m3r G, sin8 - t2c0se 

> 
+ u3~3+f3$zt+~3$z 

- 3r2sin8cos8 
( 
cj102 + wlLj2 

> 
+k,$, +w3$,, + I[ *G2rsine + t3ez 

+3r2 olLjl sin28+w2Lj2c0s2e 
( 

)- 2($zt+~)r(W2cOsf3-qsinf3) 

u3 
-2r Q,+y 

( )( 

LjzcOse - hl sin8 
)‘( ) 

f a3r u1 sin8 - u2c0se + u3Gzt 
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+ 03r G,sine 
( 

- i2c09e 
) 

- 3r2sinecose cjlo2 
( 

. + Y2 ) 
+LJ # 

2 

+olc, -a 
-1 

3 et I ( 
r ij2c0s8 - ijl sin8 

,[ 
-Qt + Clrcose + +(a: 3 e 

#e 
+-y +( 

r 
) 

+ U2rsine +:r2 
( 

afsin2e + wic0s2e ) - 2r(Gz + z) (a2 ~0s 8 
2 

- qsine) ( + w3r ulsine - u2c0se 
) 

u3 
- 3r2til~2sin8cose + u3Gz +2 

+a@ -cY 
-1 

3 8 1 [ -w2u1 + YU2 
+ a3r 

( 
W2sin9 + wlcOse )I [ -ht 

+ iilrcose + ii,rsine - ty 
-1 . 1 [ . 

-OzU1 - *2”1 + YU2 

+ (j3r(a2sine + wlcOsB) + u3r(k2sine + qc0se )I 
+ YU2 

I 
+ U, rc0se 

+ G2rsine + (Y 
-2 1 [ 2r2&l*$lsin2B + 2r2W2Lj2cos2e 

- 2r2sin0cose 
( 

Ijlti2 + hlG2 )I[ -9, + U1rcOse + U2rsinf3 
I 

-2 
1 

2.2 2 
+CY r wl sin 8 + r2(jtcos28 - 2r2hlb2cosBsinB II -$tt+'tilrcose 

+ ii2rsine + Gr 
1 [ 

-ti,sing - 3 r wfsin2e 
( 

+ k+0s2e + 2Gzr r 
) ( 

w2 ~0s 8 

- ulsin8)+ 2(4z+~)(~2c0se - ulsinB) - w~(u~s~IIEI - u200se)-~3+zr 

-1 
+ 6rwlu2sinecos8 - w t,b + a! r cj2cose - LjlsinEl 

3 8r ( U 
-& 

+ i~~cose + i,sing) + oC-1(;2c0se - cjlsine) (-Gt +;1rcose 

+ U2rsine 
4 [ 

+bJ dJ 3 et +$rsine - h2rc0se - G,$,, 
+e Se 

- - -“3+ez 2 
r 
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- @Z J$z - 3r2tiFsinec0se +3 r2uif20s8sing + 2#zer(w2c0se 

- ysin8) - 2r(Qz +z)(W2sine + wlcoS8) - w3r(ulcos8 +u2sine) 

+ 3r 
2 

wlo2 ( 
cos2e - sin28 

) - w3$ee + CY 
-1 

r k2c0se - hlsine 
( )( 

-IC, 
et 

- hlrsine + ti2rc0se - (Y 
> 

-1 
r 

( 
cj2 sin8 + Gl c0se 

)( 
-Qt+Glrcos~ 

+h2rsin8)] + > [ - G2rc0se - 3r2W:sinecosf3 + 3 r2wfcosesine 

+ 2Q ze r 02c0se ( - wl sine) - 2 r(ez + >)(a2 sine + w1 c0se) 

- 03r ulcOse ( + u2sine 
) 

+ 3r2w 0 
1 2 ( 

c0s2e - sin2e 
) - w3 Oee - u3 Gze 

+ (u-1r(&2c0se - tilsini3) (-Get - hlrsine + ii2rc0se) 

-1 
-cl! r 

( 
A2 sine + Ljl COST 

H 
-$, + hlrcos8 + U2rsin8 

, ] + Ob4) 

Equation (A. 6) is solved for r]: 

b 
b2 2 q+- - bO 

( ) (A. 10) 
1 ( ) 2blD +... = 1 

-c+oq3 

since b 
2 = O(v). Substitute (A. 10) into (A. 5): 

or 

ao + al [-? + o(q”)] + 2 [-$ + o(q3)]2 + o(q”) = 0 

a0 + al(-$+ “($)+ O(q4) . . . = 0 (A. 11) 
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Compute the indicated multiplication; (A. 11) is then 

a b 
11 00 

a00 + a01 - - 
+ a a12b00 + all bll b00 

a 02 cy CY 2 
01 

2 
a22 b00 +- +B - all ( h2rsine + r6,G2rsinB 
2!(r2 

+B +B 
-1 -2 11 12 13 cY cy 

-2 -132 2 2 322 2 - aW2b11fi2rsine + a rkb +(Y 1 zr w1 sin 8 +;r w2 cos 8 
1 00 

+ 25r(u3 - Ol) - 3r2~l~2shec0se + 2u3rol + ~~~~rsine +u3Ee 

-1 
-B ( + ti2rsinB] - av2[bll - r&l][boo + fi2rsin8] 

22 cY [ 
b 

00 

-1 2 +CY [ b 322 322 
01 

+ ;r o1 sin 8 +;r o2 c0s2e + 2eZr u 
(3 -4 

- 3r2+W2sin8cos8 + 2u3ro + ulW3rsinf3 + 0 5 I> + a12a-‘;lzp sine 
1 3 8 

-1 -2 +B 1 b +G2rsin8 1 a22 
23Q 00 

+ -(Y 
2! ( 

2b00fi2rsine + fizr2sin2e 
> 

B 
-2 + 33 I b + fi2rsin8j2 + O(q”) = 0 (A. 12) 

2!QI 00 

where 

a00 = 
-cy(z - et, +ii, rcose 

a 2 [e (et 
01 = V,E,, + - + 25z5tz- ‘1 

( 
Srcose 

sin8 
2 - 5,. 

r 

$f (ee 
a02 

‘,5,2 
= -c;,“err - 4 - (tzz + - - 25r5rz5z 

r r3 

25r5e5r6 25z5e5ez 

- r2 r2 
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all = -“%, - Qtz 

aaIIUl 
a =- 

m+l, n+l a2 

5 
= a2 c0se - a1 sine 

a0l 
5,e = TiT 

. aal 
5 = at 

8, = ulsine - u2 00se 

ah 
0 - i,e= ae 

apl 
s, =at 

B 
11 

= (y -u 
( 3 

+ 2ra 
1 ) 

+ ii2rsin8 

B = 
12 

+ ii2rsine) + 4r2(ulhlsin26 

. 
+ W2k2c0s2e 

) ( 
u3 . 

- 2 [zt +2 ra 
) l - 2(ez +$) rCr, + Lj3rBl + a3rSl 

2 . . . - 3r slnecose 01w2 + alo2 
( ) 

+; 5 +a 5 +u3t3+u 5 +t 5 
3 z 

-1 . . 
-0 ral b00 ( 

+ G2rsine) + f,i-,li,“, +LIieet + -,r.IinI 

- ti2rc0se) +$(-h2rco8e) 

r 

B 13 1 )( b - 12 2rtzzal 
-1 

+ w 3 5 ezmQ! r6 1 b 11 
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- ~,(-2~zzbl + w3eez - a-‘rir,b,,) - cy-‘r$ o1 [li +4r2(ylJ2 sin28 

+ w2 Lj2 ~0s~ 8 ) ( 
u3 

- 2 5zt + 7 ) ru - + + 1 2(ez + :)‘irl W3rbl ti3rfll 

- 3r2sinecose ( tilw2 fU 0 l 2) + w3ee + 1 0 5 et] - 3 uS’rG,[bol+$ 

+ sr2 2 ~0: ( 
sin2e 2 + 8 - 2 

~(~0s ) ( 5, 
u3 

+2 ru > 1 + a3rB1 +u3 9, 

2 . 
- 3r td102sin8cose + w35e -w2u1 + YU2 - 03ru1,e b00 

+ ii2 r sin 8 - a 1 -1 1 * 2 1 -W2i11+Wlu2+W 12 Ii -W3ru . 13 
-w u 

b 00 
2r2Glij1sin2e + 2r2LjZij2cos2e 

- 2r2sinecose ij ti 
( 

' ** 1 2 +olo2 00 u2rsine] am2[r2tifsin28 b + + 

. 

+ r2Ljtcos2e - 2r2Wlcj2cosesid II + ii2rsin6 1 b 00 

2 
+ Er 

ul sin 8 + wfc0s2e 2 +“,u, 
> 

+ 25 - - zr rul 2(5, w38, 

-1 
+ 6ralW2sinecose - 0.1~6~~ + Q rCr, -5,, + q-se + ti2Sin8 -U3Srz ( ) 

-1. 
+a u1 b00 ( 

+ i2rsine)] + O3 [-tree, - y - 5,te, 

u3 
- 3 r2afsinec0se + 3rTwtcosesine + 25,rul*2(Sz +a)rU1 e 1 

3r2y2 [ 

2 

8 sin 
2 -1 . 

- a3rSl + 
cog - 

8 
( , e 1 -w35ee+cu ‘“1 -(et 

- hlrsin-e + h2rcose 
-1. 

+Q! rb T,e 00 ( 
+ G2rsinB )I 

[e +- 
2 

-3 r2wtsinec0se f 3 r2~~sinecose + ezerul 
r 
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u3 
+ 2 ( 5, + 7 ) ru - i,e - w3rS - 1,e + 3r2w 

1 
w 

2 I ~0~~8 sin2e 1 W3eee+U3t@ 

-1 
+a! & @et - GlrsinEl + i2rc0stl +a 

B 
a Bmn =- 

m+l,n+l az (A. 13) 

In summary, the boundary value problem in terms of the potential function, with the 
higher order approximation for the free-surface condition, becomes 

Osr<a 

~2$(r.e.z,t) = 0 in o< 8127 

-h<z<q 

(A. 14) 

9, = -3 - 2rulsine + 2rw2cose, on z = -h 

and (A. 12). 

The frequency of the forcing motion is close to or equal to the first natural frequency. 
The neighborhood of resonance considered is for 

Thus, 

or 

2 

Ia2 - PFJ = 0 sP,“l ( ) asc-+O 

2 pll ( 

2 

3 
1+cv 

> 
= a2 

2 
P = 11 w2 ( 1 

2 

- < v ) 
3- 

Here pll is the lowest natural frequency of small, free-surface oscillations; 

(A. 15) 

(A. 16) 

pll = 4 aXl1 tan&ill h 

A-11 

(A. 17) 



where X 11 
corresponds to the first nonzero root of 

J;(Alna) = 0 

Constants are: 

In +c2 + Koc3 01 
0 = On 

( 4Pfl - 

In - It2 + KOIi3 21 
" n 

XlnaL - 4 

'in) 2 Jz" '2na 
2X2nP11 

( ) 

Ii1 = [‘lauJq(ku) [&Jl&J]'du, q = 0,2 

Ii2 = /" Jq($)J;&,du, q = 0,2 

113 = /llauJq(*$J: (u) du, q = 0,2 

0 

In zr 
q4 / 

""uJl (u) 2 p1 fu,) -& bq(k u)] du, q = 092 

0 

3c1; - 1 
K = 

0 2 

m 

Gl =; rOnP1l'Onhll 
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+x 
I 

Co 

G2 = roncllXOnll - 

P11c2nXllX2n 

Hl 
= 3kl + k2 

f12 
- k3 + k4) 

P mn 

2 
P =ax p mn mn mn 

x 
k2=z-- " k 

2 Kcrcll 20 

x 11 k ,n--.-.-- k 
3 2 KcuCll 30 

x 11 k4d- k 
2 KcrCll 40 
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k = 10 - I3 - 214 - 315 + 41 6 - 217 + c fl 312 + 513 + 151 
5 

+ 3c4 I 
11 2 1 

k 
1 

20 
= FKfl(912 + 413 + 1215 + 3&12 

k 
30 

= $K$(312 - 413 + 415 + $I,, 

k = KC,z, 
( 

2 
40 

312 + 413 + 415 + p 
HI2 ) 

1 
K = (iifla2 - l.,Jf(Xlla) 

%la a 

I = 
2 / 

uJ;du = x2 
11 / 

rJ:dr 

0 0 

%la a 

I = 
3 / 

+J1" du = 
/ 

tJ:dr 

0 b 

%la a 

I 
/ 

+J;du = 
1 

4= 2 
/ 

LJ4dr 

0 U 
Ql 0 r3 ' 

I5 = /11auJf(z)2du = /rJF('::li2dr 

0 0 
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F = 
1 

Afl a2 - tiJl(All a) 

2F 
1 A =-- 

2 2 
P11 

h 

2 Fl 
Al =- 

2 
pll 

h 

u2 
= Fl 

(A. 18) 

(A. 19) 

(A. 20) 

(A. 21) 

K = K 
1 10 

+ AK1 

K 
2 

= K 
20 

+ AK 
2 

K 
K = - [ -1811 + 313 + 61 + 91 - 1216 + 617 + 10 16 

4 
5 p fl(912 - 713 - 211 5 ) 

I 

K 
20 

= + 
[ 
-611 + I3 + 214 + 315 - 416 -I- 217 +(;&I2 + HI3 - 715) 

- $1 I2 I 
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AK1 = 
2Pll h 

-KG1 

x2 
11 

2P * 
AK2 = -LKG2 

x2 11 
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