17 research outputs found
Alteration of the bZIP60/IRE1 Pathway Affects Plant Response to ER Stress in Arabidopsis thaliana
The Unfolded Protein Response (UPR) is elicited under cellular and environmental stress conditions that disrupt protein folding in the endoplasmic reticulum (ER). Through the transcriptional induction of genes encoding ER resident chaperones and proteins involved in folding, the pathway contributes to alleviating ER stress by increasing the folding capacity in the ER. Similarly to other eukaryotic systems, one arm of the UPR in Arabidopsis is set off by a non-conventional splicing event mediated by ribonuclease kinase IRE1b. The enzyme specifically targets mature bZIP60 RNA for cleavage, which results in a novel splice variant encoding a nuclear localized transcription factor. Although it is clear that this molecular switch widely affects the transcriptome, its exact role in overall plant response to stress has not been established and mutant approaches have not provided much insight. In this study, we took a transgenic approach to manipulate the pathway in positive and negative fashions. Our data show that the ER-resident chaperone BiP accumulates differentially depending on the level of activation of the pathway. In addition, phenotypes of the transgenic lines suggest that BiP accumulation is positively correlated with plant tolerance to chronic ER stress
Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling
We describe a signaling pathway that mediates salt stress responses in Arabidopsis. The response is mechanistically related to endoplasmic reticulum (ER) stress responses described in mammalian systems. Such responses involve processing and relocation to the nucleus of ER membrane-associated transcription factors to activate stress response genes. The salt stress response in Arabidopsis requires a subtilisin-like serine protease (AtS1P), related to mammalian S1P and a membrane-localized b-ZIP transcription factor, AtbZIP17, a predicted type-II membrane protein with a canonical S1P cleavage site on its lumen-facing side and a b-ZIP domain on its cytoplasmic side. In response to salt stress, it was found that myc-tagged AtbZIP17 was cleaved in an AtS1P-dependent process. To show that AtS1P directly targets AtbZIP17, cleavage was also demonstrated in an in vitro pull-down assay with agarose bead-immobilized AtS1P. Under salt stress conditions, the N-terminal fragment of AtbZIP17 tagged with GFP was translocated to the nucleus. The N-terminal fragment bearing the bZIP DNA binding domain was also found to possess transcriptional activity that functions in yeast. In Arabidopsis, AtbZIP17 activation directly or indirectly upregulated the expression of several salt stress response genes, including the homeodomain transcription factor ATHB-7. Upregulation of these genes by salt stress was blocked by T-DNA insertion mutations in AtS1P and AtbZIP17. Thus, salt stress induces a signaling cascade involving the processing of AtbZIP17, its translocation to the nucleus and the upregulation of salt stress genes
Overexpression of the Endoplasmic Reticulum Chaperone BiP3 Regulates XA21-Mediated Innate Immunity in Rice
Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the innate immune response. Although PRR-mediated signaling events are critical to the survival of plants and animals, secretion and localization of PRRs have not yet been clearly elucidated. Here we report the in vivo interaction of the endoplasmic reticulum (ER) chaperone BiP3 with the rice XA21 PRR, which confers resistance to the Gram negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). We show that XA21 is glycosylated and is primarily localized to the ER and also to the plasma membrane (PM). In BiP3-overexpressing rice plants, XA21-mediated immunity is compromised, XA21 stability is significantly decreased, and XA21 proteolytic cleavage is inhibited. BiP3 overexpression does not affect the general rice defense response, cell death or brassinolide-induced responses. These results indicate that BiP3 regulates XA21 protein stability and processing and that this regulation is critical for resistance to Xoo
Prostagladin D2 is a mast cell-derived antiangiogenic factor in lung carcinoma
It is well established that prostaglandins (PGs) are involved in tumor angiogenesis and growth, yet the role of prostaglandin D2 (PGD2) remains virtually unknown. Here, we show that host hematopoietic PGD2 synthase (H-PGDS) deficiency enhances Lewis lung carcinoma (LLC) progression, accompanied by increased vascular leakage, angiogenesis, and monocyte/mast cell infiltration. This deficiency can be rescued by hematopoietic reconstitution with bone marrow from H-PGDS–naive (WT) mice. In tumors on WT mice, c-kit+ mast cells highly express H-PGDS. Host H-PGDS deficiency markedly up-regulated the expression of proangiogenic factors, including TNF-α in the tumor. In mast cell-null KitW-sh/W-sh mice, adoptive transfer of H-PGDS–deficient mast cells causes stronger acceleration in tumor angiogenesis and growth than in WT mast cells. In response to LLC growth, H-PGDS–deficient mast cells produce TNF-α excessively. This response is suppressed by the administration of a synthetic PGD2 receptor agonist or a degradation product of PGD2, 15-deoxy-Δ12,14-PGJ2. Additional TNF-α deficiency partially counteracts the tumorigenic properties seen in H-PGDS–deficient mast cells. These observations identify PGD2 as a mast cell-derived antiangiogenic factor in expanding solid tumors. Mast cell-derived PGD2 governs the tumor microenvironment by restricting excessive responses to vascular permeability and TNF-α production