1,205 research outputs found

    Stokes flow near the contact line of an evaporating drop

    Get PDF
    The evaporation of sessile drops in quiescent air is usually governed by vapour diffusion. For contact angles below 90∘90^\circ, the evaporative flux from the droplet tends to diverge in the vicinity of the contact line. Therefore, the description of the flow inside an evaporating drop has remained a challenge. Here, we focus on the asymptotic behaviour near the pinned contact line, by analytically solving the Stokes equations in a wedge geometry of arbitrary contact angle. The flow field is described by similarity solutions, with exponents that match the singular boundary condition due to evaporation. We demonstrate that there are three contributions to the flow in a wedge: the evaporative flux, the downward motion of the liquid-air interface and the eigenmode solution which fulfils the homogeneous boundary conditions. Below a critical contact angle of 133.4∘133.4^\circ, the evaporative flux solution will dominate, while above this angle the eigenmode solution dominates. We demonstrate that for small contact angles, the velocity field is very accurately described by the lubrication approximation. For larger contact angles, the flow separates into regions where the flow is reversing towards the drop centre.Comment: Journal of Fluid Mechanics 709 (2012

    Spin-resolved spectroscopy of the intermediate polar DQ Her

    Get PDF
    We present high-speed spectroscopic observations of the intermediate polar (IP) DQ Herculis. Doppler tomography of two He I lines reveals a spiral density structure in the accretion disc around the white dwarf (WD) primary. The spirals look very similar to the spirals seen in dwarf novae during outburst. DQ Her is the first well-established IP in which spirals are seen, which are in addition likely persistent because of the system's high mass transfer rate. Spiral structures give an alternative explanation for sidebands of the WD spin frequency that are found in IP light curves. The Doppler tomogram of He II lambda 4686 indicates that a large part of the emission is not disc-like. Spin trails of spectra reveal a pulsation in the He II lambda 4686 emission that is believed to result from reprocessing of X-rays from the WD's magnetic poles in the accretion flow close to the WD. We confirm the previous finding that the pulsation is only visible in the redshifted part of the line when the beam points to the back side of the disc. The absence of reprocessed light from the front side of the disc can be explained by obscuration by the front rim of the disc, but the absence of extra emission from the blueshifted back side of the disc is puzzling. Reprocessing in accretion curtains can be an answer to the problem and can also explain the highly non-Keplerian velocity components that are found in the He II lambda 4686 line. Our spin trails can form a strong test for future accretion curtain models, with the possibility of distinguishing between a spin period of 71 or 142 s. Spin trails of data taken at selected orbital phases show little evidence for a significant contribution of the bright spot to the pulsations and allow us to exclude a recent suggestion that 71 s is the beat period and 70.8 s the spin period

    Looking at the bright side - The story of AA Dor as revealed by its cool companion

    Get PDF
    Irradiation effects in close binaries are crucial for a reliable determination of system parameters and understanding the close binary evolution. We study irradiated light originating from the low mass component of an eclipsing system comprising a hot subdwarf primary and a low mass companion, to precisely interpret their high precision photometric and spectroscopic data, and accurately determine their system and surface parameters. We re-analyse the archival VLT/UVES spectra of AA Dor system where irradiation features have already been detected. After removing the predominant contribution of the hot subdwarf primary, the residual spectra reveal more than 100 emission lines from the heated side of the secondary with maximum intensity close to the phases around secondary eclipse. We analyse 22 narrow emission lines of the irradiated secondary, mainly of OII, with a few CII lines. Their phase profiles constrain the emission region of the heated side to a radius ≄\geq 95% of the radius of the secondary. The shape of their velocity profiles reveals two distinct asymmetry features one at the quadrature and the other at the secondary eclipse. We identify more than 70 weaker emission lines originating from HeI, NII, SiIII, CaII and MgII. We correct the radial velocity semi-amplitude of the center-of-light to the centre-of-mass of the secondary and calculate accurate masses of both components. The resulting masses M1M_{1}=0.46 ±\pm 0.01M⊙M_{\odot} and M2M_{2}=0.079 ±\pm 0.002M⊙M_{\odot} are in perfect accordance with those of a canonical hot subdwarf primary and a low mass star just at the substellar limit for the companion. We compute a first generation atmosphere model of the irradiated low mass secondary, which matches the observed spectrum well. We find an indication of an extended atmosphere of the irradiated secondary star.Comment: 13 pages, 9 figures, accepted for publication in A&

    XMM-Newton observations of the spiral galaxy M74 (NGC 628)

    Get PDF
    The face-on spiral galaxy M74 (NGC 628) was observed by XMM on 2002 February 2. In total, 21 sources are found in the inner 5' from the nucleus (after rejection of a few sources associated to foreground stars). Hardness ratios suggest that about half of them belong to the galaxy. The higher-luminosity end of the luminosity function is fitted by a power-law of slope -0.8. This can be interpreted as evidence of ongoing star formation, in analogy with the distributions found in disks of other late-type galaxies. A comparison with previous Chandra observations reveals a new ultraluminous X-ray transient (L_x \~ 1.5 x 10^39 erg/s in the 0.3--8 keV band) about 4' North of the nucleus. We find another transient black-hole candidate (L_x ~ 5 x 10^38 erg/s) about 5' North-West of the nucleus. The UV and X-ray counterparts of SN 2002ap are also found in this XMM observation.Comment: submitted to ApJL. Based on publicly available data, see http://xmm.vilspa.esa.es/external/xmm_news/items/sn_2002_ap/index.shtm

    Extended γ‐ray emission in solar flares

    Get PDF
    During the solar flare events on 11 and 15 June 1991, COMPTEL measured extended emission in the neutron capture line for about 5 hours after the impulsive phase. The time profiles can be described by a double exponential decay with decay constants on the order of 10 min for the fast and 200 min for the slow component. Within the statistical uncertainty both flares show the same long‐term behaviour. The spectrum during the extended phase is significantly harder than during the impulsive phase and pions are not produced in significant numbers before the beginning of the extended emission. Our results with the measurements of others allow us to rule out long‐term trapping of particles in non‐turbulent loops to explain the extended emission of these two flares and our data favour models based on continued acceleration

    Scientific objectives and first results from COMPTEL

    Get PDF
    The imaging Compton telescope (COMPTEL) is the first imaging telescope in space to explore the MeV gamma ray range. At present it is performing a complete sky survey. In later phases of the mission, selected celestial objects will be studied in more detail. Targets of special interest in the COMPTEL energy range are radio pulsars, X-ray binaries, novae, supernova remnants, molecular clouds, and the interstellar medium within the Milky Way, as well as the nuclei of active galaxies, supernovae, and the diffuse cosmic background radiation in extragalactic space. The first four months of operation demonstrated that COMPTEL basically performs as expected. The Crab is clearly seen at its proper position in the first images of the anticenter region of the Galaxy. The Crab pulsar lightcurve was measured with unprecedented accuracy. The quasar 3C273 was seen for the first time at MeV-energies. Several cosmic bursts within the COMPTEL field of view could be located to an accuracy of about 1 degree. On June 9, 11, and 15, 1991 COMPTEL observed gamma ray (continuum and line) emission from three solar flares. Neutrons were also detected from the June 9 flare. At the present state of analysis, COMPTEL achieves the prelaunch predictions of its sensitivity within a factor of 2. Based on the present performance of COMPTEL, the team is confident that COMPTEL will fulfill its primary mission of surveying and exploring the MeV sky

    COMPTEL observations of the Virgo blazars 3C 273 and 3C 279

    Get PDF
    We report the main MeV properties (detections, light curves, spectra) of the Virgo blazars 3C 273 and 3C 279 which were derived from a consistent analysis of all COMPTEL Virgo observations between 1991 and 1997

    COMPTEL observations of the blazars 3C 454.3 and CTA 102

    Get PDF
    We have analyzed the two blazars of 3C 454.3 and CTA 102 using all available COMPTEL data from 1991 to 1999. In the 10–30 MeV band, emission from the general direction of the sources is found at the 4σ-level, being consistent with contributions from both sources. Below 10 MeV only 3C 454.3 is significantly detected, with the strongest evidence (5.6 σ) in the 3–10 MeV band. Significant flux variability is not observed for both sources, while a low emission is seen most of the years in the 3–10 MeV light curve for 3C 454.3. Its time-averaged MeV spectrum suggests a power maximum between 3 to 10 MeV
    • 

    corecore