13 research outputs found

    Sphericity and roundness computation for particles using the extreme vertices model

    Get PDF
    Shape is a property studied for many kinds of particles. Among shape parameters, sphericity and roundness indices had been largely studied to understand several processes. Some of these indices are based on length measurements of the particle obtained from its oriented bounding box (OBB). In this paper we follow a discrete approach based on Extreme Vertices Model and devise new methods to compute the OBB and the mentioned indices. We apply these methods to synthetic sedimentary rocks and to a real dataset of silicon nanocrystals (Si NC) to analyze the obtained results and compare them with those obtained with a classical voxel model.Peer ReviewedPostprint (author's final draft

    Determination of shape and sphericity of silicon quantum dots imaged by EFTEM-tomography

    Get PDF
    The shape of size-controlled silicon nanocrystals (Si NCs) embedded in SiO2 is investigated by tomographic energy-filtered transmission electron microscopy (EFTEM). The sphericity of the quantum dots is determined by computational analyses. In contrast to other fabrication methods, we demonstrate that the NCs in superlattices are non-agglomerated, individual clusters with slightly oblate spheroidal shape. This allows for low surface-to-volume ratios and thereby low non-radiative defect densities as required by optoelectronic or sensing applications. A near-spherical shape is also a prerequisite for the direct comparison of Si quantum dots (QDs) with theoretical simulationsPeer ReviewedPostprint (author's final draft

    Sphericity and Roundness Computation for Particles using the Extreme Vertices Model

    Get PDF
    Shape is a property studied for many kinds of particles. Among shape parameters, sphericity and roundness indices had been largely studied to understand several processes. Some of these indices are based on length measurements of the particle obtained from its oriented bounding box (OBB). In this paper we follow a discrete approach based on Extreme Vertices Model and devise new methods to compute the OBB and the mentioned indices. We apply these methods to synthetic sedimentary rocks and to a real dataset of silicon nanocrystals (Si NC) to analyze the obtained results and compare them with those obtained with a classical voxel model

    Influence of Al<sub>2</sub>O<sub>3</sub> Nanoparticle Addition on a UV Cured Polyacrylate for 3D Inkjet Printing

    No full text
    The brittleness of acrylic photopolymers, frequently used in 3D Inkjet printing, limits their utilization in structural applications. In this study, a process was developed for the production and characterization of an alumina-enhanced nanocomposite with improved mechanical properties for Inkjet printing. Ceramic nanoparticles with an average primary particle size (APPS) of 16 nm and 31 nm, which was assessed via high-resolution scanning electron microscopy (HRSEM), were functionalized with 3.43 and 5.59 mg/m2 3-(trimethoxysilyl)propyl methacrylate (MPS), respectively, while being ground in a ball mill. The suspensions of the modified fillers in a newly formulated acrylic mixture showed viscosities of 14 and 7 mPa∙s at the printing temperature of 60 &#176;C. Ink-jetting tests were conducted successfully without clogging the printing nozzles. Tensile tests of casted specimens showed an improvement of the tensile strength and elongation at break in composites filled with 31 nm by 10.7% and 74.9%, respectively, relative to the unfilled polymer

    Flexible thin film pH sensor based on low-temperature atomic layer deposition

    No full text
    Flexible and transparent zinc oxide (ZnO) thin film field-effect transistors (TF-FET) for the use as small volume potentiometric pH sensors are developed. Low temperature atomic layer deposition (ALD) is used for the fabrication of the metal oxides ZnO and aluminum dioxide (Al2O3). Changing the deposition temperature of the ZnO from 150 to 100 °C allowed a significant increase in resistivity by four orders of magnitude. Hence, adjusting the controlled low carrier concentration for the field-effect based sensor is demonstrated. ZnO TF-FET pH sensors fabricated on silicon/silicon dioxide (Si/SiO2) substrates are compared with sensors based on flexible and transparent polyethylene naphthalate (PEN) foil substrates. Comparison of both types of pH sensors showed successful pH sensitivity for pH ranging from 5 to 10 in both cases

    Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride

    No full text
    Phosphorus- and boron-doped silicon nanocrystals (Si NCs) embedded in silicon oxide matrix can be fabricated by plasma-enhanced chemical vapour deposition (PECVD). Conventionally, SiH4 and N2O are used as precursor gasses, which inevitably leads to the incorporation of ≈10 atom % nitrogen, rendering the matrix a silicon oxynitride. Alternatively, SiH4 and O2 can be used, which allows for completely N-free silicon oxide. In this work, we investigate the properties of B- and P-incorporating Si NCs embedded in pure silicon oxide compared to silicon oxynitride by atom probe tomography (APT), low-temperature photoluminescence (PL), transient transmission (TT), and current–voltage (I–V) measurements. The results clearly show that no free carriers, neither from P- nor from B-doping, exist in the Si NCs, although in some configurations charge carriers can be generated by electric field ionization. The absence of free carriers in Si NCs ≤5 nm in diameter despite the presence of P- or B-atoms has severe implications for future applications of conventional impurity doping of Si in sub-10 nm technology nodes

    Determination of shape and sphericity of silicon quantum dots imaged by EFTEM-tomography

    No full text
    The shape of size-controlled silicon nanocrystals (Si NCs) embedded in SiO2 is investigated by tomographic energy-filtered transmission electron microscopy (EFTEM). The sphericity of the quantum dots is determined by computational analyses. In contrast to other fabrication methods, we demonstrate that the NCs in superlattices are non-agglomerated, individual clusters with slightly oblate spheroidal shape. This allows for low surface-to-volume ratios and thereby low non-radiative defect densities as required by optoelectronic or sensing applications. A near-spherical shape is also a prerequisite for the direct comparison of Si quantum dots (QDs) with theoretical simulationsPeer Reviewe
    corecore