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Research Highlights

¢ A method to define the orientation based on Oriented Bounding Boxes (OBB).

¢  Compute an OBB using the Extreme Vertices Model (EVM).

e An EVM-based method to compute a true 3D roundness index.

e  Study of correlation between the developed methods and those reported in the literature.

¢ A complete analysis of a real silica nano dataset applying the proposed methods.
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Abstract

Shape is a property studied for many kinds of particles. Among shape pa-
rameters, sphericity and roundness indices had been largely studied to un-
derstand several processes. Some of these indices are based on length mea-
surements of the particle obtained from its oriented bounding box (OBB). In
this paper we follow a discrete approach based on Extreme Vertices Model
and devise new methods to compute the OBB and the mentioned indices.
We apply these methods to synthetic sedimentary rocks and to a real dataset
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of silicon nanocrystals (Si NC) to analyze the obtained results and compare
them with those obtained with a classical voxel model.

Keywords: Binary volumes, Shape description, Length measurements,
Oriented Bounding Box, Sphericity, Roundness.

1. Introduction

Computed-based experimentation is getting a growing interest in many
fields where scientific data coming from real samples are used to compute
structural parameters as porosity, connectivity, sphericity and roundness
among others. In the bioengineering field, these parameters allow to evalu-
ate physical properties such as the osteoporosis degree of bones [30] and the
suitability of biomaterials to be used as implants [42]. In geology, they allow
to analyze the transport and distribution of fluids into sedimentary rocks for
petrographic purposes [33] and the grain shape and sphericity index in silica
sand for industrial and manufacturing applications [40]. In the nanoscopy
field, the size and sphericity of silicon nanocrystals are useful parameters to
determine their applicability as optoelectronic materials [15, 48] in Si based
light emitters, as sensor material with optical readout, or as label material
in bio-imaging.

In this work we focus on sphericity and roundness parameters. Spheric-
ity is a measure of the degree to which a particle approximates the shape
of a sphere, and is independent of its size. Roundness is the measure of
the sharpness of a particle’s edges and corners. They measure two differ-
ent morphological properties: sphericity is most dependent on elongation,
whereas roundness is largely dependent on the sharpness of angular protru-
sions (convexities) and indentations (concavities) from the object. Sphericity
and roundness are ratios and, therefore, dimensionless numbers. Some of
these indices are based on length measurements of the three representative
axes of a reference ellipsoid of the particle that can be computed from its
oriented bounding box.

The contribution of this paper is focused on rock-like objects as those
shown in Figures 1 and 5 (sand particles, pebbles or gravel) as well as on Si
nanocrystals (NCs). The presented methodology performs well with these
two types of objects although they have very different sizes which is a guar-
anty of its validity. They are 0-genus objects that may show protrusions and
concavities and we are not restricted to star-shaped objects as in [9].
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In most of the reported literature, the operations to study the struc-
tural parameters are performed directly on the classical voxel model. In
this paper, we propose new geometric methods to compute sphericity and
roundness based on the Extreme Vertices Model (EVM). EVM is a concise
representation model for binary volumes and we have developed an EVM-
based platform which offers a series of operations for binary volumes that
have been used in the methods and results presented in this paper, as ero-
sion, dilation and connected component labelling. The conversion cost from
the initial voxel model (VXM) to EVM is shared by all of these operations.
See Section 3. The main contributions of this paper are:

e Two EVM-based methods to compute the oriented bounding box (see
Section 4.1) and a 3D roundness index (see Section 4.3).

e Results showing the efficiency and accuracy of the presented methods
applied to two sets of data: a set of 30 synthetic rocks (Section 5) and
a real Si NC dataset (Section 6).

This paper is based in part on the doctoral thesis by the corresponding
author [10]. Here we improve and extend the obtained results. Concerning
the rock dataset (Section 5), we present a discussion on the OBB volume
obtained with VXM and EVM, a comparative between VXM and EVM model
to compute the sphericity and roundness based on length measurements,
and an analysis of how the resolution affects the computation of the OBB,
sphericity and roundness indexes.

Concerning the results with a Si NC datasets, in a recent publication
[23] an accurate description of the acquisition method and samples is pre-
sented and the obtained results concerning the computation of shape and
true sphericity with VXM are validated by the NC experts. These results
have encouraged us to further extend and improve this study by including an
analysis of values of sphericity based on length measurements, true spheric-
ity and roundness computed with VXM and EVM for this Si NC dataset
(Section 6).

2. Related Work

2.1. Sphericity

Sphericity is one of the most used compactness measure of a shape [49].
There are basically two formulation theories for the sphericity index. One of
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them is based on length measurements and the other one on the volume and
surface area (true sphericity).

Length measurements are the lengths of the three representative axes of
an object, a = dy (longest), b = d; (intermediate) and ¢ = dg (shortest)
and correspond to its OBB or reference ellipsoid. They can be computed
by principal component analysis (PCA) on the corresponding voxel model
3, 24].

There are several formulations of this type. A simplified sphericity index
is defined as ¥ = d,,/a [45], where d,, is the nominal diameter (diameter of
the sphere having the same volume as the object).

Krumbein defined the intercept sphericity as ¥ = {/bc/a? which is a
function of the volume ratio of the reference ellipsoid to the circumscribing
sphere. A more widely accepted sphericity index is [41]:

U = y/c?/ab (1)

From these length measurements the three elongation parameters can be
computed: ey, =b/a, e,, = ¢/a and e, = ¢/b.

The so-called true sphericity index was defined by Wadell [44] as the
ratio of the nominal surface area, S,, (surface area of a sphere having the
same volume as the object), to the actual surface area of the object, S:

S, V36mV?

R A @

where V is the volume of the object. The circularity index, ¢ = 47.S/perimeter?
is the 2D equivalent of the true sphericity index. Both indices range from 1
(perfect sphere or circle) to 0 (elongated shape).

Volume and surface are computed directly from the voxel model [4, 24] by
summing voxels and external surfels respectively. A better estimation of the
surface area can be obtained by a weighted average of the boundary voxels
[46] or extracting a triangulated mesh with MC (Marching Cubes) [29].

Other sphericity indices can be defined as ¥ = V,/V; [3] where V,, is
the actual volume of the particle, computed summing voxels, and V; is the
volume of a sphere with diameter c.

Approaches based on the continuum representation use spherical har-
monic expansions to compute S and V'[9, 51].

Sphericity related indices have also been computed at nanoscopic scale.
An equivalent spherical diameter is used to obtain a pore size distribution in
nanoporous materials [18].
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Si NCs are analyzed with 2D software, ImagelJ, to obtain the equivalent
diameter [19] and circularity index [28], and a 3D software, Amira, is used
to compute size and Lent measurements [25] of quantum dot particles.

A different approach uses cross-correlation to adjust the three elongation
parameters of the ellipsoid best fitting the particle [34].

Finally, another measure in use to compute the compactness is the con-
vexity (C,), which describes how closely a particle represents a convex hull
and can be defined as C, = V/Voy, where V is the volume of the particle
and Vop the volume of the convex hull enclosing the particle [49].

2.2. Roundness

Although roundness is a 3D property, some methods work with the max-
imum 2D projection plane (silhouette) of the object looking for a trade-off
between accuracy and time.

Roundness (R) was defined by Wadell [44] as the ratio of the average
radius of curvature of the corners of the object’s silhouette to the radius of
the maximum inscribed circle: R = (% > 7)) Tmaz, Where n is the number
of corners, r; the radius of the i-th corner curvature, and r,,,, the radius of
the maximum inscribed circle. R is 1 for a perfectly round object and less
than 1 for any other object.

The Krumbein chart (KC) [26] shows examples of pebbles for which the
roundness has been calculated using this equation and grouped into nine
classes (see Figure 1).

2D methods can be based on granulometry (morphological opening) [14]
or on discrete geometry (distance transform of the silhouette) [39]. They
exhibit a correlation with KC of 0.96 and 0.92 respectively. A recent approach
computes roundness [50] by fitting circles at the corners. There is also a ray-
casting based approach [35]. In it, equally spaced rays are traced from the
centre of a least-squares circle and the roundness is obtained as the average
of distances d; — r, where d; is the distance from the circle center to the
intersection point between the i-th ray and the object and r is the radius of
the circle.

There are 3D approaches following Wadell definition. From the voxel
model, a MC triangulated mesh is computed and from them principal, mean
and Gaussian curvatures can be estimated [49]. Another approach uses only
the maximum principal curvature and computes it with spherical harmonic
expansions [9]. Both approaches are very time consuming and the first one
simplifies the initial mesh in order to reduce the computation cost.
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0.4
Broken pebbles

Figure 1: Krumbein’s chart for visual determination of roundness [26].

Other authors [20] propose new formulations for the roundness index
based on length measurements, surface area and volume. Based on the idea
that the ratio between the volume and surface area reflects the roundness,
this index is defined as:

V
R=—;
SV abc
In this work, a specific software Pixform is used to compute it.
In another work [3], the roundness index is defined as:

R=— 2 (4)

47.‘_( a+g+c)2

(3)

i.e., as the ratio between the surface area of the particle and a sphere with
a diameter equal to the arithmetic mean of the three length measurements,
and it is computed from the voxel model.

There is a 3D approach based on ray-casting. Using spherical harmonics
expansion, the roundness index is computed as a surface integral of the dot
product between the surface position vector r and the unit normal vector to
the surface n, r - n, [9]. However, the computation of this index is restricted
to star-shaped particles.
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Figure 2: An OPP with its extreme vertices marked with dots; a vertical brink from vertex
a to vertex c is marked where these vertices are both eztreme vertices while vertex b is
not; cuts perpendicular to X-axis are shown with its corresponding faces in red and blue
according to their orientation

In this paper, we present an efficient method to compute a 3D roundness
index. It is based on a discretized model, the Extreme Vertices Model, follows
a ray-casting approach based on distances and is not restricted to star-shaped
particles.

3. Extreme Vertices Model

The most common model to represent 3D binary digital images is the
voxel model. The continuous analog of a 3D binary voxel model is an or-
thogonal pseudo-polyhedron (OPP) [27], i. e., an orthogonal polyhedron
with a possible non-manifold boundary.

The Extreme Vertices Model is an alternative representation model for
3D binary digital images in which the object is represented by a subset of
the corresponding OPP vertices, called extreme vertices.

Let P be an OPP, a brink of P is the maximal uninterrupted segment
built out of a sequence of collinear and contiguous two-manifold edges of P.
The brink ending vertices are called extreme vertices (EV). An OPP, and
hence a 3D digital image, can be unambiguously represented by this E'V set.
A cut is the set of vertices lying on a plane perpendicular to a main axis of
P. The Extreme Vertices Model (EVM) represents objects by the EV set,
sorted lexicographically. Figure 2 shows an example of an OPP. Extreme

Page 8 of 40



vertices are marked with a dot. There are only 4 vertices of the OPP that
are not extreme vertices. Segment from vertex a to vertex c is a brink and
therefore vertices a and c are extreme vertices while vertex b is not. Cuts
perpendicular to the X-axis (from Cj to C5) are coloured. The different
colors and corresponding arrows show faces perpendicular to the X-axis with
its orientation.

EVM is a complete B-Rep model as all the geometry and neighboring
information of faces, edges and vertices of the corresponding OPP can be
obtained [43]. The storage requirements for an OPP P in its EVM represen-
tation is O(n), n being the cardinality of the E'V set which is O(nv), nv being
the total number of vertices of the OPP. EVM is a more concise scheme than
the voxel model and even than models that store only boundary voxels as
the semiboundary and shell models [37]. For more details concerning EVM
see [2] and [37].

OPP have been used in several 3D applications as Boolean operations
8, 17], direct skeleton computation (instead of iterative peeling techniques)
[16, 31], orthogonal hull computation [6, 7] and in theory of hybrid systems
to model the solutions of reachable states [8, 13].

Concerning the EVM model the following operations have been devel-
oped: object volume and surface, and Boolean operations [1]; lossless model
simplification [12]; morphological erosion and dilation operations and con-
nected component labeling [36, 38], and structural parameters computation
as connectivity (genus) [11] and porosity with a virtual porosimetry method
that doesn’t need previous skeleton computation [38].

4. Indices Computation

In this section, we present methods to compute the OBB and the corre-
sponding length measurements as well as the sphericity and roundness indices
of particles represented with EVM.

4.1. OBB Computation

The method presented in this paper applies PCA to the set of extreme
vertices, EV, of the EVM-represented object. Although the number of ver-
tices of the EV set is significantly smaller than the number of voxels, the
OBB produced from the EVM is very similar to the OBB produced from the
voxel model and the computation time is greatly reduced in the EVM-based
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method. In Section 5 and Section 6 we discuss the results for both approaches
applied to synthetic rock objects and real silica dataset, respectively.

4.2. Sphericity Computation

The sphericity indices based on length measurements are obtained straight-
forward from the OBB.

To estimate the true sphericity index (Equation 2), the volume is com-
puted from the EVM [1] giving the same result than computed from the voxel
model. However, the surface area is computed from the voxel model with a
method [46] that minimizes the mean square error. It performs a traversal
of the boundary voxels assigning weights to them depending on its typology.

4.8. Roundness computation

Roundness can be estimated with a ray-casting-based approach. Uni-
formly distributed rays are traced from the center of the object to some
sample points on its surface. For each ray, the difference between the dis-
tance from the center to the corresponding sample point and the radius of a
reference shape at this point is computed. Then, roundness is estimated as
an average of these distances.

Based on this idea, in this paper we propose a new 3D roundness index
computation method. It uses the ellipsoid inscribed in the OBB of the object
under consideration as a reference shape. The presented approach traces rays
from the center of this ellipsoid to each vertex of the EV set in the EVM-
represented object. For any vertex v € EV, the difference between the
distance from the center to v and the radius of the ellipsoid passing through
v are computed and the roundness index is obtained as the average of these
distances. The EVM-based roundness index is computed in four steps:

1. Compute the principal axes of the reference ellipsoid inscribed in the
OBB of the object with the method presented in Section 4.1. See Figure
3(a).

2. Compute a geometric transformation matrix, M, that aligns the OBB
with the frame of reference and centers it at the origin O. Apply M to
each v € EV. See Figure 3(b).

3. For each v¥ € EV/, trace a ray from the origin to v*, and compute the
intersection point between this ray and the reference ellipsoid, q*, and
the distance between v* and q*, Aj. The intersection point g* can
be obtained solving the quadratic equation #?|p*|? — 1 = 0 for ¢, with
p* = (20} /a, 205 /b, 205 /). See Figure 3(c).

9
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()

Figure 3: (a) An object and its OBB. (b) Object and reference ellipsoid after applying the
geometric transformation matrix that aligns and centers them with the frame of reference.
(c) A ray through a point v € EV| the intersection point between the ray and the ellipsoid
q and the difference A.

4. Compute the roundness R as the average of the previous computed
distances. To remove the size effect, the average is divided by a nor-
malization factor. We use the geometric mean of the principal axes
lengths of the reference ellipsoid (a, b, ¢). This is the same normal-
ization factor applied in the method that will be used to compare the
present EVM-based method [20], which have proven to have a strong
correlation with Krumbein’s roundness. The average is also multiplied
by a factor of 10 to enhance the readability of the results. Finally, we
subtract the result to 1 in order to keep the roundness definition, where
1 correspond to a perfectly round object and less than 1 for any other

10
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object. Finally, roundness R is expressed as:

n

R=1- mlek (5)

n(abc)s 4

where n is the cardinality of EV.

Note that Equation 5 can give negative values for non rock-like objets,
which are not studied in this paper. On the other hand, the factor of 10 we
apply does not affect the correlation formula, since it depends on the mean
and the covariance of the data.

5. Results with synthetic data

This section and the following show a comparative between VXM-based
methods and EVM-based methods in three experiments. The corresponding
programs have been written in C++ and tested on a PC Intel®Core i7-
4600M CPU@2.90GHz with 7.6 GB RAM and running Linux.

5.1. EVM-roundness Correlation using Krumbein’s chart

In order to show the correlation of the EVM-roundness index (Equation
5) with the roundness index defined by Wadell, the silhouettes of the Krum-
bein’s chart (see Figure 1) have been tested in a 2D version of the proposed
method. Each tested image was created with a resolution of ~ 320 x 320
pixels. Figure 4 shows the relationship between Krumbein’s roundness and
EVM-roundness. These results have a linear correlation of 0.898. The EVM-
roundness index has also been computed applying the OBB computed from
the voxel model. It results in a slightly better (almost the same) correlation
of 0.902.

5.2. Indices computation for synthetic rocks

We have used a GPL Blender extension, rock Generator (wiki.blender.org/
index.php/Extensions:2.6), to create a set of thirty 3D models of rocks with
different expected sphericity and roundness (see Figure 5). These models
simulate sedimentary rocks whose sizes can range from mm to hundredths
of mm. Each model was converted to a voxel model with a resolution of
~ 512 x 512 x 512 voxels. Distribution of the set of rocks according to their
computed sphericity and roundness is shown in Figure 6.

11
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Figure 4: Relationship between Krumbein’s chart roundness and EVM-roundness (Equa-
tion 5).

Figure 5: Thirty 3D rock samples created with rockGenerator.

Statistics for the 30 rock datasets are listed in Table 1. For each dataset
it shows the size in voxels, the number of used points to compute the VM-
based OBB and its volume. Next, it shows the same parameters for the
EVM-based OBB. The last column shows the volume difference between
both approaches.

From the results obtained in the 30 rock datasets we have observed that
in 14 rocks (marked in bold in Table 1) the EVM-based OBB is tighter
than the VXM-based OBB. Moreover, the volume difference between both
approaches ranges from 0.10%(R6) to 2.63%(R2); in both cases the VXM-
based OBB is tighter than EVM-based OBB. The minimum and maximum

12
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Figure 7: Relationship between the OBB volume computed with VXM and EVM.

differences considering the datasets in which the EVM-based OBB is tighter
are 0.12%(R9) and 2.60%(R25) respectively. In the sphere dataset the VXM-
based OBB is tighter than EVM-based OBB and the difference is just 0.04%.

Moreover, Figure 7 shows the relationship between the OBB volume com-
puted with VXM and EVM. These results have a strong correlation of 0.997.
Therefore we conclude that the EVM-based OBB is, at least, as accurate as
the VXM-based OBB.

Table 2 shows the sphericity and roundness indices computed from Equa-
tion 1 and 5 respectively. Next the times to compute: the EVM-based OBB,

13
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Table 1: Statistics of datasets for resolution 512 x 512 x 512.

VXM

EVM

D. Size _ - - — %ov.d.
pts., 10° | OBBVol, 10 pts., 10 OBBVol, 10
R1 485x512x508 483 157 592 153 2.47
R2 495x512x506 554 132 652 135 2.63
R3 511x465x510 502 107 577 109 1.73
R4 511x510x495 560 126 561 123 2.05
R5 485x485x512 596 123 535 123 1.02
R6 512x396x491 349 106 461 106 0.10
R7 511x370x357 302 63 346 62 2.02
RS 511x409x402 349 79 434 78 0.80
R9 414x391x512 369 83 440 83 0.12
R10 473x419x512 489 101 492 102 0.26
R11 | 511x507x422 424 103 502 103 0.27
R12 | 420x512x441 342 105 419 108 2.01
R13 | 495x466x512 404 98 525 100 2.57
R14 | 511x504x417 478 99 492 100 1.02
R15 | 511x440x509 564 119 505 119 0.25
R16 | 405x437x512 321 77 444 77 0.32
R17 | 484x512x475 440 119 533 116 2.59
R18 | 511x475x482 460 116 510 118 2.04
R19 | 512x410x389 340 75 386 77 2.54
R20 | 511x360x224 185 38 256 38 0.17
R21 | 471x419x512 404 88 475 89 2.00
R22 | 453x471x512 461 109 459 110 0.77
R23 | 334x385x512 278 66 360 65 2.28
R24 | 451x426x512 385 86 470 87 1.93
R25 | 404x443x512 370 93 425 90 2.60
R26 | 310x356x512 230 48 328 49 2.34
R27 | 429x456x512 374 100 493 102 2.57
R28 | 511x466x432 301 79 451 78 2.13
R29 | 463x512x464 436 110 529 109 0.48
R30 | 430x393x512 329 84 435 85 1.81
Sph. | 512x512x512 698 134 575 134 0.04

the EVM-roundness, the VXM-based OBB and the VXM-based surface area.
In this case, the average time to compute the EVM-roundness and the VM-
roundness indices for the rock samples is 115 and 9592 milliseconds respec-
tively, i.e., our approach is more than an order of magnitude faster. This is

mainly because we do not need to compute the surface area.

Our method has the disadvantage of the cost of conversion, the average
time to convert VXM to EVM for the rocks samples is 13611 milliseconds.

14
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Table 2: Results of datasets for resolution 512 x 512 x 512.

Time in milliseconds

D. ¥ (Eq. 1) | R (Eq. 5)

OBB-EVM | R-EVM OBB-VXM | SA-VXM
R1 0.93 0.28 65 79 5088 8686
R2 0.94 0.53 74 74 4646 8970
R3 0.84 0.61 63 91 4641 T
R4 0.85 0.70 63 81 4951 8684
R5 0.91 0.80 59 72 4289 8591
R6 0.85 0.32 51 64 3046 5607
R7 0.77 0.69 43 50 2460 4628
RS 0.74 0.48 48 59 3465 5413
R9 0.87 0.58 49 60 3434 5755
R10 0.89 0.75 54 66 4036 6993
R11 0.88 0.48 54 69 3480 6387
RI12 0.83 0.22 46 59 3030 5528
R13 0.68 0.44 63 69 3583 6630
R14 0.82 0.66 57 65 3294 6701
R15 0.87 0.74 56 66 3651 7749
R16 0.92 0.46 48 61 2647 4935
R17 0.81 0.33 99 71 4047 6697
R18 0.80 0.48 55 67 4410 7200
R19 0.78 0.56 44 53 2927 5097
R20 0.66 0.66 28 35 1494 2711
R21 0.80 0.58 52 64 3447 6101
R22 0.75 0.46 49 62 3690 7031
R23 0.85 0.49 39 47 2155 3876
R24 0.82 0.58 51 62 3242 5662
R25 0.86 0.48 46 51 3063 5324
R26 0.79 0.56 35 43 1802 3356
R27 0.77 0.34 55 65 3375 6141
R28 0.91 0.39 49 59 3091 5189
R29 0.93 0.47 58 69 3790 6363
R30 0.88 0.47 47 60 2727 4964
Sph. 1.00 0.99 63 76 4708 9649

However, we have developed an EVM-based platform which offers a series of
operations for binary volumes. The cost of converting VXM a EVM is shared
by all these processes. Besides the length measures, sphericity and roundness
presented in this paper, other structural parameters can be computed faster
than in their VXM-representation, such as the genus [5, 11], the skeleton
[31, 32] and the pore-size distribution for porous materials [38].

The values of sphericity (Equation 1) and roundness (Equation 3 and 4),
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Figure 8: Relationship between VXM and EVM in the computation of (a) sphericity
Equation 1, (b) roundness indices Equation 3 and (c) Equation 4.

based on length measurements will also be as accurate computed with VXM
than computed with EVM and the resulting correlations are 0.985, 0.995,
and 0.922 respectively. Figure 8 shows the graphs with these correlations.

Finally the VXM-roundness index (Equation 3) has been compared with
the roundness index proposed (Equation 5). The correlation is 0.933 and the
corresponding graph is shown in Figure 9.

5.2.1. Resolution study

We also show that, the model resolution has little effect on the computa-
tion of the OBB, sphericity and roundness indices. For this study, we have
selected six rocks and the sphere, which cover a wide range of sphericity and
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Figure 9: Relationship between VXM-roundness (Equation 3) and EVM-roundness (Equa-
tion 5).

(d) R12 (e) R19 (f) R20

Figure 10: Datasets of the 6 selected rocks and their OBB. The EVM-based and VXM-
based OBB in continuous (blue) and stippled (red) line respectively.

roundness indices (see Figure 10). We have tested the selected models with
space resolutions of 64 x 64 x 64, 128 x 128 x 128, 256 x 256 x 256 and
512 x 512 x 512. Figure 11(a) shows, in a log-log scale, the volume difference
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Figure 11: Resolution test for OBB computation: volume difference and computation
time.

computed between a VXM-based and an EVM-based OBB. Note that the
volume difference decreases while resolution increases and that, even with a
low resolution of 64 x 64 x 64, the difference is less than 6%. Moreover, for
some samples (R2,R12, and R19) the dependence is almost linear.

Figure 11(b) shows, in a log-log scale, how resolution affects the com-
putation time in both methods. From the analysis of these data it can be
deduced that the VXM-based method is of cubic order (cn®) whereas the
EVM-based method is of quadratic order (cn?) as they depend directly on
the number of points in the respective representation.

Figures 12(a) and 12(b) show how resolution affects the computation of
sphericity and roundness respectively using the proposed methods. We have
computed the relative difference respect the model in the 512x512x 512 space
resolution. Note that the sphericity index is almost invariant, in the worst
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Figure 12: Resolution test for OBB computation: sphericity and roundness variation.

tested case, the relative difference is less than 1%. Regarding the roundness
index, in the worst tested case, the relative difference is less than 12%, this
difference is bigger than that of the sphericity index due to EVM-roundness
is highly dependent on the number of points. For instance, the R12 sample
in the 64 x 64 x 64 space resolution has just 1.5% of points that are in the
512 x 512 x 512 space resolution. Therefore, this is a good result as the
resolution in which real models are acquired is increasing constantly.

6. Analysis of a Real Silicon Nanocrystals dataset

A real silicon nanocrystals (Si NCs) dataset has been obtained. In this
section we use this dataset to compare values obtained with EVM-based and
with VXM-based approaches.

A more detailed discussion on the NCs sample growth, the acquisition
EFTEM method and the results obtained using the VXM-based approach
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Figure 13: Some views of the silicon nanocrystals dataset tomography.

can be found in [23] which are also briefly included in this section.

Concerning this application, the contribution of this paper is the compar-
ison of values obtained with EVM-based and with VXM-based approaches.
Moreover we also describe in detail the required preprocessing to convert the
raw format tomography into a suitable VXM model.

6.1. Sample acquisition and preprocessing

Size controlled Si NCs embedded in a SiOy matrix were grown on Si sub-
strates by thermal evaporation of a superlattice comprised of 20 SiO5/SiO,—1 2
bilayer stacks and a 10 nm thick capping oxide [22]. The sample has 3 nm
thick SiO, layers and 5 nm thick SiO, spacing layers.

EFTEM (energy filtered transmission electron microscopy) was performed
and tilt series from —68° to 4+-76° at an increment of 4° were acquired [21, 47].
Due to the limited tilt range, objects appear elongated along the Y-direction
in the tomographic reconstruction. The elongation factor can be estimated
from the tilt range and is &~ 1.3 for the conditions specified above. From
the complete image we have considered the undisturbed 10 first layers as the
few NCs in the topmost layers maybe some specimen preparation artefact.
Therefore the final considered sample size is 49 x 106 x 157 nm.

The complete tomography is a 32-bit gray scale dataset in RAW format
and size 131 x 281 x 332. The 3D projection and some 2D slices of this
dataset are depicted in Figure 13.
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Figure 14: Gray value histogram of the sample.

The following preprocessing steps have been applied:

1. Convert the original dataset to a 8-bit voxel model.

2. Scale the voxel model via trilinear interpolation, to twice its size in
order to better define the grain shapes.

3. Apply an elongation factor of 1.3 to the Y axis: 262 x 730 x 664 voxel
model.

4. Crop the model in order to remove the base plate and consider only
the 10 first layers: 262 x 730 x 286 voxel model

5. Apply a binary threshold filter.

6. Remove noise applying morphological opening and closing operations

Step 5 requires a threshold that allows yielding a good segmentation of
the particles. The gray value histogram is shown in Figure 14, in this case,
high values of gray represent the foreground and the curve helps to determine
where the background ends and the foreground begins. Note that the curve
falls off around the value of 50. Therefore, thresholds of 45, 50 and 55 have
been used to binarize the dataset.

Figure 15 shows the sample after the corresponding threshold and noise
removal, where for each threshold, the number of connected components
(CC), considering 6-connectivity, is indicated. Observe that the result of
applying a threshold of 45 looks like a model having several agglomerated
particles. The result of applying a threshold of 55 seems to lose information.
Therefore, we consider that the particle shapes are better defined applying
a threshold of 50.
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(¢c) CC=589

Figure 15: Dataset after segmentation and noise removal with thresholds (a) 45, (b) 50
and (c) 55.
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Figure 16: Number of connected components according to their volumes.

After the preprocessing, we compute the connected components, which
represent the quantum dot particles. Figure 16 shows a graph of the number
of CC according to their volumes.

From the previous data, a voxel size of 0.19 nm approx results. The
average size of a particle (diameter) is expected to be around 2 nm or 3 nm.
Considering spherical particles this size would correspond to 1190 voxels
approx. However, for the size distribution computation, only particles with
a volume of 200 or more voxels will be considered. Therefore, the resulting
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Figure 17: Resulting particles with volume larger than 200 voxels.

dataset consists of 496 CC. See Figure 17 where the resulting particles are
depicted.

6.2. Particles Properties Computation

Results obtained using the VXM-based approach [23] showed that NCs in
superlattices are non-agglomerated, individual clusters with slightly oblate
spheroidal shape. Length measurements and sphericity computation were
used for these conclusions which were validated by the NCs experts. Now we
show the obtained values using the VXM and EVM approaches.

One of the studied shape parameters was the mean diameter computed
as (a 4+ b+ ¢)/3. The value obtained with EVM and VXM were 2.72 nm
and 2.67 nm respectively. Both values fit very well to the photoluminescence
results [22] and the fact that the original SiO,-layer from which the Si NCs
formed was 3 nm thick.

Ratios ¢/a, ¢/b and a/b have also been computed. From our understand-
ing the NCs are not perfectly spherical but a bit like a rotational ellipsoid
with the lateral shape quite circular since the nanocrystals have no restric-
tions in X-Y direction and these lateral dimensions are larger than the vertical
dimension (Z) due to the self-organized growth with the limiting upper and
lower SiO, barrier. The obtained average ratios with VXM were ¢/a = 0.41,
¢/b=0.61 and a/b = 1.48, and with EVM were ¢/a = 0.42, ¢/b = 0.61 and
a/b = 1.45. These values corroborate the previous assumption. Moreover a
mean ¢/b of 0.61 corresponds to a an oblate spheroid with just 12% more
surface-to-volume ratio than a real sphere.
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The true sphericity (Equation 2) has only been computed with VXM and
the obtained value of 0.80 as average with a peak value of 0.86 in the normal
distribution is a good result, as there are almost no perfectly spherical NCs
with U = 1.0, but only few have significantly small U-values.

The average sphericity based on length measurements a, b, ¢ (Equation 1)
gives a different value than the true sphericity but the values obtained with
the two compared approaches are very similar: 0.64 (VXM) and 0.65 (EVM).

Roundness is not a really useful parameter for this NC application, since
the scale in which these sharp or round edges are, is at sub-nanometer level,
i.e. close to or even beyond the resolution limit of EFTEM tomography.
However, in order to further test the EVM-based presented approach we
have computed the roundness using VXM (Equation 3) and EVM (Equation
5) and the obtained values are also very similar: 0.15 and 0.16 respectively.

7. Conclusions

We have presented new methods based on EVM to compute length mea-
surements, sphericity and roundness of 3D objects represented as binary
volume datasets.

Length measurements have been computed from the OBB of the object
obtained by PCA applied to the restricted set of vertices of the EVM repre-
sentation. Experimental results have shown that this method is as accurate
as the same method with VXM and is more than an order of magnitude
faster.

We have proposed a new EVM-based roundness index. The method to
compute it is based on the ray-tracing paradigm and uses the vertices of the
EVM representation. Besides, the time to compute the proposed index is also
more than an order of magnitude faster compared with previous VXM-based
methods, which depend on the surface area computation.

We have computed the correlation between our approach and the ap-
proach based on the voxel model for two sphericity indices and for the round-
ness index obtaining good results.

One of the advantages of EVM is that the cost of most of the involved
processes are less affected by the increasing resolution than in VXM. We have
corroborated this fact for the computation of the sphericity and roundness
indices: the EVM approach is of quadratic order while the VXM is of cubic
order with increasing resolution.
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A complete study of a Si NCs dataset has been presented and the com-
puted parameters are equally accurate using VXM or EVM while the com-
putation time is reduced by an order of magnitude.

As a future work, we are devising an alternative method to estimate the
real surface area directly of an EVM-represented object so that we could
compute the true sphericity without using a VXM-based scheme. We are
also studying a method to partition the pore space (for porous materials)
without having to compute the skeleton.
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