31 research outputs found
Development and performance comparison of MPI and Fortran Coarrays within an atmospheric research model
A mini-application of The Intermediate Complexity Research (ICAR) Model offers an opportunity to compare the costs and performance of the Message Passing Interface (MPI) versus coarray Fortran, two methods of communication across processes. The application requires repeated communication of halo regions, which is performed with either MPI or coarrays. The MPI communication is done using non-blocking two-sided communication, while the coarray library is implemented using a one-sided MPI or OpenSHMEM communication backend. We examine the development cost in addition to strong and weak scalability analysis to understand the performance costs
Fortran coarray implementation of semi-Lagrangian convected air particles within an atmospheric model
This work added semi-Lagrangian convected air particles to the Intermediate Complexity Atmospheric Research (ICAR) model. The ICAR model is a simplified atmospheric model using quasi-dynamical downscaling to gain performance over more traditional atmospheric models. The ICAR model uses Fortran coarrays to split the domain amongst images and handle the halo region communication of the image’s boundary regions. The newly implemented convected air particles use trilinear interpolation to compute initial properties from the Eulerian domain and calculate humidity and buoyancy forces as the model runs. This paper investigated the performance cost and scaling attributes of executing unsaturated and saturated air particles versus the original particle-less model. An in-depth analysis was done on the communication patterns and performance of the semi-Lagrangian air particles, as well as the performance cost of a variety of initial conditions such as wind speed and saturation mixing ratios. This study found that given a linear increase in the number of particles communicated, there is an initial decrease in performance, but that it then levels out, indicating that over the runtime of the model, there is an initial cost of particle communication, but that the computational benefits quickly offset it. The study provided insight into the number of processors required to amortize the additional computational cost of the air particles
Characterizing uncertainty of the hydrologic impacts of climate change
The high climate sensitivity of hydrologic systems, the importance of those systems to society, and the imprecise nature of future climate projections all motivate interest in characterizing uncertainty in the hydrologic impacts of climate change. We discuss recent research that exposes important sources of uncertainty that are commonly neglected by the water management community, especially, uncertainties associated with internal climate system variability, and hydrologic modeling. We also discuss research exposing several issues with widely used climate downscaling methods. We propose that progress can be made following parallel paths: first, by explicitly characterizing the uncertainties throughout the modeling process (rather than using an ad hoc “ensemble of opportunity”) and second, by reducing uncertainties through developing criteria for excluding poor methods/models, as well as with targeted research to improve modeling capabilities. We argue that such research to reveal, reduce, and represent uncertainties is essential to establish a defensible range of quantitative hydrologic storylines of climate change impacts
Characterizing uncertainty of the hydrologic impacts of climate change
The high climate sensitivity of hydrologic systems, the importance of those systems to society, and the imprecise nature of future climate projections all motivate interest in characterizing uncertainty in the hydrologic impacts of climate change. We discuss recent research that exposes important sources of uncertainty that are commonly neglected by the water management community, especially, uncertainties associated with internal climate system variability, and hydrologic modeling. We also discuss research exposing several issues with widely used climate downscaling methods. We propose that progress can be made following parallel paths: first, by explicitly characterizing the uncertainties throughout the modeling process (rather than using an ad hoc “ensemble of opportunity”) and second, by reducing uncertainties through developing criteria for excluding poor methods/models, as well as with targeted research to improve modeling capabilities. We argue that such research to reveal, reduce, and represent uncertainties is essential to establish a defensible range of quantitative hydrologic storylines of climate change impacts
Shower Thoughts: Why Scientists Should Spend More Time in the Rain
Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists\u27 human sensory and cognitive systems during storms
A Unified Approach for Process-Based Hydrologic Modeling: 2. Model Implementation and Case Studies
This work advances a unified approach to process-based hydrologic modeling, which we term the “Structure for Unifying Multiple Modeling Alternatives (SUMMA).” The modeling framework, introduced in the companion paper, uses a general set of conservation equations with flexibility in the choice of process parameterizations (closure relationships) and spatial architecture. This second paper specifies the model equations and their spatial approximations, describes the hydrologic and biophysical process parameterizations currently supported within the framework, and illustrates how the framework can be used in conjunction with multivariate observations to identify model improvements and future research and data needs. The case studies illustrate the use of SUMMA to select among competing modeling approaches based on both observed data and theoretical considerations. Specific examples of preferable modeling approaches include the use of physiological methods to estimate stomatal resistance, careful specification of the shape of the within-canopy and below-canopy wind profile, explicitly accounting for dust concentrations within the snowpack, and explicitly representing distributed lateral flow processes. Results also demonstrate that changes in parameter values can make as much or more difference to the model predictions than changes in the process representation. This emphasizes that improvements in model fidelity require a sagacious choice of both process parameterizations and model parameters. In conclusion, we envisage that SUMMA can facilitate ongoing model development efforts, the diagnosis and correction of model structural errors, and improved characterization of model uncertainty
Recommended from our members
A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies
This work advances a unified approach to process-based hydrologic modeling, which we term the ‘‘Structure for Unifying Multiple Modeling Alternatives (SUMMA).’’ The modeling framework, introduced in the companion paper, uses a general set of conservation equations with flexibility in the choice of process parameterizations (closure relationships) and spatial architecture. This second paper specifies the model equations and their spatial approximations, describes the hydrologic and biophysical process parameterizations currently supported within the framework, and illustrates how the framework can be used in conjunction with multivariate observations to identify model improvements and future research and data needs. The case studies illustrate the use of SUMMA to select among competing modeling approaches based on both observed data and theoretical considerations. Specific examples of preferable modeling approaches include the use of physiological methods to estimate stomatal resistance, careful specification of the shape of the within-canopy and below-canopy wind profile, explicitly accounting for dust concentrations within the snowpack, and explicitly representing distributed lateral flow processes. Results also demonstrate that changes in parameter values can make as much or more difference to the model predictions than changes in the process representation. This emphasizes that improvements in model fidelity require a sagacious choice of both process parameterizations and model parameters. In conclusion, we envisage that SUMMA can facilitate ongoing model development efforts, the diagnosis and correction of model structural errors, and improved characterization of model uncertainty.Keywords: unified model, scaling behavior, hydrometeorologyKeywords: unified model, scaling behavior, hydrometeorolog
Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling
The Snow Ensemble Uncertainty Project (SEUP) is an effort to establish a baseline characterization of snow water equivalent (SWE) uncertainty across North America with the goal of informing global snow observational needs. An ensemble-based modeling approach, encompassing a suite of current operational models is used to assess the uncertainty in SWE and total snow storage (SWS) estimation over North America during the 2009–2017 period. The highest modeled SWE uncertainty is observed in mountainous regions, likely due to the relatively deep snow, forcing uncertainties, and variability between the different models in resolving the snow processes over complex terrain. This highlights a need for high-resolution observations in mountains to capture the high spatial SWE variability. The greatest SWS is found in Tundra regions where, even though the spatiotemporal variability in modeled SWE is low, there is considerable uncertainty in the SWS estimates due to the large areal extent over which those estimates are spread. This highlights the need for high accuracy in snow estimations across the Tundra. In midlatitude boreal forests, large uncertainties in both SWE and SWS indicate that vegetation–snow impacts are a critical area where focused improvements to modeled snow estimation efforts need to be made. Finally, the SEUP results indicate that SWE uncertainty is driving runoff uncertainty, and measurements may be beneficial in reducing uncertainty in SWE and runoff, during the melt season at high latitudes (e.g., Tundra and Taiga regions) and in the western mountain regions, whereas observations at (or near) peak SWE accumulation are more helpful over the midlatitudes
The Somatic Genomic Landscape of Glioblastoma
We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer
A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions
Soil hydraulic properties (SHPs) regulate the movement of water in the soil. This in turn plays an important role in the water and energy cycles at the land surface. At present, SHPS are commonly defined by a simple pedotransfer function from soil texture class, but SHPs vary more within a texture class than between classes. To examine the impact of using soil texture class to predict SHPS, we run the Noah land surface model for a wide variety of measured SHPs. We find that across a range of vegetation cover (5 - 80% cover) and climates (250 - 900 mm mean annual precipitation), soil texture class only explains 5% of the variance expected from the real distribution of SHPs. We then show that modifying SHPs can drastically improve model performance. We compare two methods of estimating SHPs: (1) inverse method, and (2) soil texture class. Compared to texture class, inverse modeling reduces errors between measured and modeled latent heat flux from 88 to 28 w/m(exp 2). Additionally we find that with increasing vegetation cover the importance of SHPs decreases and that the van Genuchten m parameter becomes less important, while the saturated conductivity becomes more important