
Development and performance comparison of MPI and Fortran
Coarrays within an atmospheric research model

Extended Abstract

Soren Rasmussen1, Ethan D Gutmann2, Brian Friesen3, Damian Rouson4, Salvatore Filippone 1,
Irene Moulitsas 1

1Cranfield University, UK
2National Center for Atmospheric Research, USA
3Lawrence Berkeley National Laboratory, USA

4Sourcery Institute, USA

ABSTRACT
Amini-application of The Intermediate Complexity Research (ICAR)
Model offers an opportunity to compare the costs and performance
of the Message Passing Interface (MPI) versus coarray Fortran, two
methods of communication across processes. The application re-
quires repeated communication of halo regions, which is performed
with either MPI or coarrays. The MPI communication is done using
non-blocking two-sided communication, while the coarray library
is implemented using a one-sided MPI or OpenSHMEM communi-
cation backend. We examine the development cost in addition to
strong and weak scalability analysis to understand the performance
costs.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; • Applied computing→ Environmental sciences;

KEYWORDS
coarray Fortran, message passing interface, computational hydrom-
eteorology

ACM Reference Format:
Soren Rasmussen1, Ethan D Gutmann2, Brian Friesen3, Damian Rouson4,

Salvatore Filippone 1, IreneMoulitsas 1 1Cranfield University, UK 2National
Center for Atmospheric Research, USA 3Lawrence Berkeley Na-
tional Laboratory, USA 4Sourcery Institute, USA . 2018. Develop-

ment and performance comparison of MPI and Fortran Coarrays
within an atmospheric research model. In Proceedings of PAW-ATM
18: Parallel Applications Workshop, Alternatives to MPI, Dallas, TX,
USA, November 11–16, 2018 (PAW18), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PAW18, November 11–16, 2018, Dallas, TX, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
1.1 Motivation and Background
In high performance computing MPI has been the de facto method
for memory communication across a system’s nodes for many
years. MPI 1.0 was released in 1994 and research and development
has continued across academia and industry. A method in Fortran
2008, known as coarray Fortran, was introduced to express the
communication within the language [5]. This work was based on
an extension to Fortran that was introduced by Robert W. Numrich
and John Reid in 1998 [7]. Coarray Fortran, like MPI, is a single-
program, multiple-data (SPMD) programming technique. Coarray
Fortran’s single program is replicated across multiple processes,
which are called "images". Unlike MPI, it is based on the Partitioned
Global Address Space (PGAS) parallel programming model. This
allows the Fortran syntax to easily express communication while
maintaining the transparency of the underlying algorithm concept.
This will be further discussed in the programmability section.

The application used to examine the different programming mod-
ules is a mini-application of The Intermediate Complexity Atmo-
spheric Research (ICAR) model. This simplified atmospheric model
was developed at the National Center for Atmospheric Research
(NCAR) to predict aspects of weather such as precipitation, tem-
perature, and humidity [3]. The main impetus of the investigation
is to understand the scalability and performance of the different
coarray and MPI programming models. The ICAR mini-app was
originally developed using coarrays to communicate halo regions.
For this paper we modified the existing code to use MPI, instead of
coarrays, for communication between processes.

We used Open Coarrays, a library implementation of coarray
Fortran, for our runtime comparisons. The Open Coarrays commu-
nication backend can be implemented with either an OpenSHMEM
layer or MPI. Open Coarrays’ MPI implementation uses one-sided
communication with passive synchronization [2]. This has allowed
us to do performance comparisons between three versions of the
ICAR mini-app: the OpenSHMEM backend, the coarray one-sided
MPI, and the two-sided MPI implementation.

Past work has been done on the scalability and performance
differences between coarrays and MPI in the past [1, 4] . Past exper-
iments using this specific mini-app have looked at the comparisons
between the OpenSHMEM communication and the MPI commu-
nication backend [8]. To our knowledge the work done here is

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
li2106
Text Box
SC18 The International Conference for High Performance Computing, Networking, Storage, and Analysis,Dallas, TX, 11-16 November 2018.

li2106
Cross-out
.

li2106
Text Box
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

PAW18, November 11–16, 2018, Dallas, TX, USA Soren Rasmussen et al.

unique because we are using a higher number of processes then
past coarray vs. MPI comparisons. Additionally we are comparing
a MPI version and two different coarray communication backends,
one which itself is an MPI implementation.

1.2 Programmability
In the ICAR mini-app the domain is split from a rectangular cuboid
across the x and y-axis. Therefore the process/image can have up to
four neighbors it needs to send and receive boundary regions from.
This halo region commutation is done with coarrays or MPI and
offers a useful comparison in the ease of programmability. In the
coarray fortran model it is easy to express movement between dif-
ferent images. The following code shows how the east_neighbor
would transfer the halo region of array A to the west_neighbor.
e a s t _ h a l o (1 : h a l o _ s i z e , : , 1 : ny) [wes t_ne ighbor]

= A(s t a r t : s t a r t + h a l o _ s i z e , : , :)
The single line that east_neighbor would run in the coarray
model, requires an implementation of MPI_Isend, MPI_Irecv, and
MPI_Wait in two MPI ranks. Data structures need to be created
or modified to pass around the MPI_Request handles so MPI_Wait
knows when the communication is complete.

In our application the complexity of MPI is further increased
when sending a large number of subarrays. A very natural transla-
tion of the above communication pattern of subarrays would be as
follows:
c a l l MPI_Isend (A(s t a r t : s t a r t + h a l o _ s i z e , : , :) , &

l eng th , MPI_Real , wes t_ne ighbor , tag , &
MPI_COMM_WORLD, s end_ reque s t , i e r r)

In the context of our mini-application, this communication has
to occur on up to four sides, with nine different arrays for vari-
ables such as rain mass, water vapor, etc. being passed. The above
code is a natural MPI transposition, but experienced MPI program-
mers will have noticed that dealing with (possibly non-contiguous)
portions of a multidimensional array implies that the Fortran com-
piler would sometimes create a temporary copy of the subarray
to be passed to the MPI_Isend and MPI_Irecv calls. However the
MPI programming model requires the communication buffers to
be persistent until the completion by MPI_Wait; by that time, the
temporary copy of the subarray would often have disappeared. This
application leads to segmentation faults whose proper diagnosis
can be quite tricky, even with all debugging flags turned on. It
is an error that domain scientists without in-depth knowledge of
MPI would have trouble solving. MPI_Type_create_subarray and
MPI_Type_commit are used to ensure the data transfers occur cor-
rectly; for efficiency reasons, since the types do not change during
the simulation, they can be defined once and then cached. Thus
one line of communication using coarrays now requires five MPI
calls and a modified data structure for a caching scheme of the MPI
type encodings, including the send and receive MPI_Requests for
MPI_Wait.

In Figure 2 we attempt to quantify the amount of additional
lines of code that need to be written. An "additional line" is defined
as an additional line of code that is not found in the other imple-
mentation. If a line is changed to a different function call, such as
‘MPI_Block‘ instead of ‘sync all‘, it is not counted as an additional

Figure 1: A visualization of the atmospheric distribution of
water vapor (blues) and the resulting precipitation (green
to red) simulated by The Intermediate Complexity Atmo-
spheric Research (ICAR).

File Additional lines % of additional code
mp_thompson 15 0.28

domain_implementation 6 1.09
domain_interface 0 0
exchange_interface 54 48.65

exchange_implementation 226 91.13

Figure 2: Number of additional lines that need to be written.
A changed line does not count towards the total.

line. If a single function call runs multiple lines due to the number
of arguments, it is treated as one line. As to be expected our physics
code, ‘mp_thompson‘, and the domain files did not need significant
changes, since the communication is handled in the exchange files.
In those exchange files 48.65% and 91.13% more additional code
needed to be written in the interface and implementation file. It
is quite clear that the ease of programming enabled by Coarray
Fortran enables the application developer to concentrate on less
mundane topics, leaving the handling of such low-level details to
the compiler and the runtime library.

3 METHODOLOGY
3.1 Compilers, runtimes, and hardware
The experiments were done on two different systems, the first being
NCAR’s system Cheyenne, which is a SGI ICE XA Cluster [6]. It
has 4032 computation nodes and each node is dual socket with
2.3-Ghz Intel Xeon E5-2697V4 processors. The interconnect is a
Mellanox EDR Infiniband with a partial 9D Enhanced Hypercube
single-plane topology. The compiler we used for comparison is
GNU’s gfortran 6.3 with an application binary interface of coarrays
from OpenCoarrays 1.9.4 [2]. The MPI implementation used for
both the MPI and OpenSHMEM runs was version 2.15f of SGI’s
Message Passing Toolkit (MPT), the preferred version on Cheyenne.

https://github.com/gutmann/icar
https://github.com/gutmann/icar

Development and performance comparison of MPI and Fortran Coarrays PAW18, November 11–16, 2018, Dallas, TX, USA

2 DISCUSSION OF RESULTS

(a) 25 points per process (b) 100 points per process

(c) 400 points per process (d) Cray weak scaling

Figure 3: (a-c) Weak scaling results for 25, 100, and 400 points per process (d) weak scaling for Cray.

The second system used was Lawrence Berkeley National Labo-
ratory’s (LBNL) Cori, a Cray XC40 with 12,076 total compute nodes
[8]. Of those nodes, 9688 of them are single-socket, 68-core Intel
Xeon Phi Processor 7250 ("Knight’s Landing") at 1.4 GHz. We used
Knight’s Landing with the Cray Compiling Environment (CCE)
8.7.1. The Cray compiler uses Cray’s proprietary PGAS runtime
for implementing coarrays within Fortran. It was run with 2 MiB
hugepages enabled, rather than the default 4 KiB pages, because
huge pages often gives better performance for PGAS codes. For the
runs done on both Cheyenne and Cori a single core was used per
MPI rank or coarray image.

4 RESULTS
In figures 3a, 3b, and 3c respectively, the results are presented for
weak scaling at 25, 100, and 400 points per process. These runs
were all done on the SGI cluster Cheyenne. At each problem size
we gathered multiple timing samples of the coarray version with
the OpenSHMEM communication backend, the coarray version
with the MPI backend, and the plain MPI implementation. At lower
numbers of points per process the OpenSHMEM communication
backend performs better. As the number of points per process
increases, OpenSHMEM continues to perform better but the pure
MPI version keeps pace. For theweak scaling runs done using Cray’s

proprietary PGAS runtime on Cori 3d, the results are good. There
is no noticeable deterioration in efficiency, meaning the parallel
overhead is not slowing down the runs.

It is interesting to note that the MPI implementation had the
largest amount of variance for any one run. For the OpenSHMEM
runs the variance was always under 0.4 seconds while for the pure
MPI runs the smallest was 0.63 seconds and the largest 1.2. For 25,
100, and 400 points per process the variance was 39%, 19%, and 8%
for OpenSHMEM and 34%, 31%, 22% for the pure MPI. A data trend
that was unclear is the decrease in simulation time for the the first
few weak scaling runs for 400 points per processor. This occurred
in all three of the different implementations.

For strong scaling 4 we used up to 25,600 processes and found
that at every data point OpenSchmem was outperforming MPI. At
high number of processes we were unable to get the the coarray
Fortran MPI communication backend to work.

The coarray Fortran with MPI backend stopped being usable
as we went over 2,000 processes; strictly speaking it did not stop
working, but the initialization time started to increase exponentially.
At 2,000 processes it would take about an hour to start the process
and at 3,000 processes it exceeded the 12 hour wall clock limit.
Further investigation will be needed to understand why this is
occurring and fix it.

PAW18, November 11–16, 2018, Dallas, TX, USA Soren Rasmussen et al.

(a) Strong scaling results

Figure 4: Strong scaling results for 2000 x 2000 x 20 problem

5 CONCLUSIONS AND FUTUREWORK
We have shown that the easy syntax provided by coarray Fortran
can be exploited without any serious effects on the runtime and
scalability. Coarray syntax allows domain-scientists to take advan-
tage of high performance computing resources and MPI without
unduly burdening them with the details. The compiler and coarray
library will also handle any changes to those details as computing
hardware and the MPI standard advances. One can surmise this
would allow them to focus more on the science and applications
of their expertise. An advantage of using the OpenCoarray library
is that it takes no extra coding effort to switch between the MPI
and OpenSHMEM communication backend. There might be cir-
cumstances where the MPI backend will be faster and having the
ability to easily switch is advantageous.

For future work we would like to do runs with a higher proces-
sor count to better understand where the strong scaling and the
Crays weak scaling tail off. Running the scaling tests with different
MPI implementations would reveal if one would be able to match
the OpenSHMEM timing. An interesting question is how manually
packing MPI buffers before sending them would effect performance
in relation to the one-sided coarray version and the two-sided
MPI_Type_create_subarray version. Would the MPI implementa-
tion’s handling of memory management be more efficient than a
user’s manually packed buffers?

The variance in the weak scaling runs of the pure MPI implemen-
tation is also another area of possible interest. Both OpenSHMEM
and the MPI implementation’s variance decreased as the number
of processes used increased, but at 22% MPI remained fairly high.
Each process count was only run five times for each version, it
would interesting to see if this variance is truly high and how it is
effected by more runs and a higher process count.

Within the ICAR mini-app the segment of code where the heavy
computation occurs has been written with OpenMP directives.
While they were not used for this analysis we plan on investi-
gating how OpenMP would effect the runtime and efficiency. This
study would help indicate how to effectively use the cores allotted
when running the larger ICAR application.

ACKNOWLEDGMENTS
This paper is based upon work supported by NSF’s National Center
for Atmospheric Research, a major facility fully funded by the
National Science Foundation.

Wewould like to acknowledge high-performance computing sup-
port from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s
Computational and Information Systems Laboratory, sponsored by
the National Science Foundation.

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under Contract No. DE-
AC02-05CH11231.

REFERENCES
[1] John V Ashby and John K Reid. 2008. Migrating a scientific application from MPI

to coarrays. CUG 2008 Proceedings. RAL-TR-2008-015: ftp://ftp. numerical. rl. ac.
uk/pub/reports/arRAL2008015. pdf (2008).

[2] Alessandro Fanfarillo, Tobias Burnus, Valeria Cardellini, Salvatore Filippone, Dan
Nagle, and Damian Rouson. 2014. OpenCoarrays: open-source transport layers
supporting coarray Fortran compilers. In Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models. ACM, 4.

[3] Ethan Gutmann, Idar Barstad, Martyn Clark, Jeffrey Arnold, and Roy Rasmussen.
2016. The intermediate complexity atmospheric research model (ICAR). Journal
of Hydrometeorology 17, 3 (2016), 957–973.

[4] Manuel Hasert, Harald Klimach, and Sabine Roller. 2011. Caf versus mpi-
applicability of coarray fortran to a flow solver. In European MPI Users’ Group
Meeting. Springer, 228–236.

[5] ISO/IEC 1539-1:2010 2010. Information technology – Programming languages –
Fortran – Part 1: Base language. Standard. International Organization for Stan-
dardization, Geneva, CH.

[6] MultiMedia LLC. 2018. Cheyenne. (2018). https://www2.cisl.ucar.edu/resources/
computational-systems/cheyenne

[7] Robert W. Numrich and John Reid. 1998. Co-array Fortran for Parallel Program-
ming. SIGPLAN Fortran Forum 17, 2 (Aug. 1998), 1–31. https://doi.org/10.1145/
289918.289920

[8] Damian Rouson, Ethan D. Gutmann, Alessandro Fanfarillo, and Brian Friesen.
2017. Performance Portability of an Intermediate-complexity Atmospheric Re-
search Model in Coarray Fortran. In Proceedings of the Second Annual PGAS
Applications Workshop (PAW17). ACM, New York, NY, USA, Article 4, 4 pages.
https://doi.org/10.1145/3144779.3169104

https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne
https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne
https://doi.org/10.1145/289918.289920
https://doi.org/10.1145/289918.289920
https://doi.org/10.1145/3144779.3169104

	Abstract
	1 Introduction
	1.1 Motivation and Background
	1.2 Programmability

	3 Methodology
	3.1 Compilers, runtimes, and hardware

	2 Discussion of Results
	4 Results
	5 Conclusions and Future Work
	Acknowledgments
	References

