7,416 research outputs found
A Relativistic Description of Gentry's New Redshift Interpretation
We obtain a new expression of the Friedmann-Robertson-Walker metric, which is
an analogue of a static chart of the de Sitter space-time. The reduced metric
contains two functions, and , which are interpreted as,
respectively, the mass function and the gravitational potential. We find that,
near the coordinate origin, the reduced metric can be approximated in a static
form and that the approximated metric function, , satisfies the
Poisson equation. Moreover, when the model parameters of the
Friedmann-Robertson-Walker metric are suitably chosen, the approximated metric
coincides with exact solutions of the Einstein equation with the perfect fluid
matter. We then solve the radial geodesics on the approximated space-time to
obtain the distance-redshift relation of geodesic sources observed by the
comoving observer at the origin. We find that the redshift is expressed in
terms of a peculiar velocity of the source and the metric function, ,
evaluated at the source position, and one may think that this is a new
interpretation of {\it Gentry's new redshift interpretation}.Comment: 11 pages. Submitted to Modern Physics Letters
Post-Newtonian expansion for Gauss-Bonnet Gravity
The Parametrized Post-Newtonian expansion of gravitational theories with a
scalar field coupled to the Gauss-Bonnet invariant is performed and
confrontation of such theories with Solar system experiments is discussed.Comment: 4 pages; typos corrected, published versio
Energy-Momentum Restrictions on the Creation of Gott Time Machines
The discovery by Gott of a remarkably simple spacetime with closed timelike
curves (CTC's) provides a tool for investigating how the creation of time
machines is prevented in classical general relativity. The Gott spacetime
contains two infinitely long, parallel cosmic strings, which can equivalently
be viewed as point masses in (2+1)-dimensional gravity. We examine the
possibility of building such a time machine in an open universe. Specifically,
we consider initial data specified on an edgeless, noncompact, spacelike
hypersurface, for which the total momentum is timelike (i.e., not the momentum
of a Gott spacetime). In contrast to the case of a closed universe (in which
Gott pairs, although not CTC's, can be produced from the decay of stationary
particles), we find that there is never enough energy for a Gott-like time
machine to evolve from the specified data; it is impossible to accelerate two
particles to sufficiently high velocity. Thus, the no-CTC theorems of Tipler
and Hawking are enforced in an open (2+1)-dimensional universe by a mechanism
different from that which operates in a closed universe. In proving our result,
we develop a simple method to understand the inequalities that restrict the
result of combining momenta in (2+1)-dimensional gravity.Comment: Plain TeX, 41 pages incl. 9 figures. MIT-CTP #225
Large Scale Inhomogeneities from the QCD Phase Transition
We examine the first-order cosmological QCD phase transition for a large
class of parameter values, previously considered unlikely. We find that the
hadron bubbles can nucleate at very large distance scales, they can grow as
detonations as well as deflagrations, and that the phase transition may be
completed without reheating to the critical temperature. For a subset of the
parameter values studied, the inhomogeneities generated at the QCD phase
transition might have a noticeable effect on nucleosynthesis.Comment: 15 LaTeX pages + 6 PostScript figures appended at the end of the
file, HU-TFT-94-1
Monopole Vector Spherical Harmonics
Eigenfunctions of total angular momentum for a charged vector field
interacting with a magnetic monopole are constructed and their properties
studied. In general, these eigenfunctions can be obtained by applying vector
operators to the monopole spherical harmonics in a manner similar to that often
used for the construction of the ordinary vector spherical harmonics. This
construction fails for the harmonics with the minimum allowed angular momentum.
These latter form a set of vector fields with vanishing covariant curl and
covariant divergence, whose number can be determined by an index theorem.Comment: 21 pages, CU-TP-60
Origin of FRW cosmology in slow-roll inflation from noncompact Kaluza-Klein theory
Using a recently introduced formalism we discuss slow-roll inflaton from
Kaluza-Klein theory without the cylinder condition. In particular, some
examples corresponding to polynomic and hyperbolic -potentials are
studied. We find that the evolution of the fifth coordinate should be
determinant for both, the evolution of the early inflationary universe and the
quantum fluctuations.Comment: (final version) to be published in EPJ
Resonance Enhanced Tunneling
Time evolution of tunneling in thermal medium is examined using the real-time
semiclassical formalism previously developed. Effect of anharmonic terms in the
potential well is shown to give a new mechanism of resonance enhanced
tunneling. If the friction from environment is small enough, this mechanism may
give a very large enhancement for the tunneling rate. The case of the
asymmetric wine bottle potential is worked out in detail.Comment: 12 pages, LATEX file with 5 PS figure
Inflaton field governed universe from NKK theory of gravity: stochastic approach
We study a nonperturbative single field (inflaton) governed cosmological
model from a 5D Noncompact Kaluza-Klein (NKK) theory of gravity. The inflaton
field fluctuations are estimated for different epochs of the evolution of the
universe. We conclude that the inflaton field has been sliding down its
(quadratic) potential hill along all the evolution of the universe and a mass
of the order of the Hubble parameter. In the model here developed the only free
parameter is the Hubble parameter, which could be reconstructed in future from
Super Nova Acceleration Probe (SNAP) data.Comment: accepted in European Physical Journal
- …
