2,193 research outputs found
A Cost-Effective Solid-State Approach to Synthesize g-C3N4 Coated TiO2 Nanocomposites with Enhanced Visible Light Photocatalytic Activity
Novel graphitic carbon nitride (g-C3N4) coated TiO2 nanocomposites were prepared by a facile and cost-effective solid-state method by thermal treatment of the mixture of urea and commercial TiO2. Because the C3N4 was dispersed and coated on the TiO2 nanoparticles, the as-prepared g-C3N4/TiO2 nanocomposites showed enhanced absorption and photocatalytic properties in visible light region. The as-prepared g-C3N4 coated TiO2 nanocomposites under 450°C exhibited efficient visible light photocatalytic activity for degradation of aqueous MB due to the increased visible light absorption and enhanced MB adsorption. The g-C3N4 coated TiO2 nanocomposites would have wide applications in both environmental remediation and solar energy conversion
Identifying Operational Benefits of the Arrival Management System – A KPI-Based Experimental Method by Evaluating Radar Trajectories
The arrival management (AMAN) system is a decision support tool for air traffic controllers to establish and maintain the landing sequence for arrival aircraft. The original intention of designing the AMAN system is to improve the efficiency of air traffic management (ATM), but few studies are investigating the operational benefits of this system based on key performance indicators (KPIs) and evaluating actual data in a real-time environment. The main purpose of this paper is to propose a KPI based transferable comparative analysis method for identifying the operational benefits of the AMAN through radar trajectories. Firstly, six KPIs are established from a joint study of the mainstream ATM performance frameworks worldwide. Secondly, appropriate evaluation technique approaches are determined according to the characteristics of each KPI. Finally, a Chinese metropolitan airport is taken for the case study, and three periods are defined to form data samples with high similarity for comparative experiments. The results validate the feasibility of the proposed method and find comprehensive performance improvements in arrival operations under the effects of the AMAN system
New Approach to Develop Ultra-High Inhibitory Drug Using the Power Function of the Stoichiometry of the Targeted Nanomachine or Biocomplex
AIMS: To find methods for potent drug development by targeting to biocomplex with high copy number.
METHODS: Phi29 DNA packaging motor components with different stoichiometries were used as model to assay virion assembly with Yang Hui\u27s Triangle [Formula: see text], where Z = stoichiometry, M = drugged subunits per biocomplex, p and q are the fraction of drugged and undrugged subunits in the population.
RESULTS: Inhibition efficiency follows a power function. When number of drugged subunits to block the function of the complex K = 1, the uninhibited biocomplex equals q(z), demonstrating the multiplicative effect of stoichiometry on inhibition with stoichiometry 1000 \u3e 6 \u3e 1. Complete inhibition of virus replication was found when Z = 6.
CONCLUSION: Drug inhibition potency depends on the stoichiometry of the targeted components of the biocomplex or nanomachine. The inhibition effect follows a power function of the stoichiometry of the target biocomplex
Small molecule-mediated tribbles homolog 3 promotes bone formation induced by bone morphogenetic protein-2.
Although bone morphogenetic protein-2 (BMP2) has demonstrated extraordinary potential in bone formation, its clinical applications require supraphysiological milligram-level doses that increase postoperative inflammation and inappropriate adipogenesis, resulting in well-documented life-threatening cervical swelling and cyst-like bone formation. Recent promising alternative biomolecular strategies are toward promoting pro-osteogenic activity of BMP2 while simultaneously suppressing its adverse effects. Here, we demonstrated that small molecular phenamil synergized osteogenesis and bone formation with BMP2 in a rat critical size mandibular defect model. Moreover, we successfully elicited the BMP2 adverse outcomes (i.e. adipogenesis and inflammation) in the mandibular defect by applying high dose BMP2. Phenamil treatment significantly improves the quality of newly formed bone by inhibiting BMP2 induced fatty cyst-like structure and inflammatory soft-tissue swelling. The observed positive phenamil effects were associated with upregulation of tribbles homolog 3 (Trib3) that suppressed adipogenic differentiation and inflammatory responses by negatively regulating PPARγ and NF-κB transcriptional activities. Thus, use of BMP2 along with phenamil stimulation or Trib3 augmentation may be a promising strategy to improve clinical efficacy and safety of current BMP therapeutics
A Comprehensive Comparison of Projections in Omnidirectional Super-Resolution
Super-Resolution (SR) has gained increasing research attention over the past
few years. With the development of Deep Neural Networks (DNNs), many
super-resolution methods based on DNNs have been proposed. Although most of
these methods are aimed at ordinary frames, there are few works on
super-resolution of omnidirectional frames. In these works, omnidirectional
frames are projected from the 3D sphere to a 2D plane by Equi-Rectangular
Projection (ERP). Although ERP has been widely used for projection, it has
severe projection distortion near poles. Current DNN-based SR methods use 2D
convolution modules, which is more suitable for the regular grid. In this
paper, we find that different projection methods have great impact on the
performance of DNNs. To study this problem, a comprehensive comparison of
projections in omnidirectional super-resolution is conducted. We compare the SR
results of different projection methods. Experimental results show that
Equi-Angular cube map projection (EAC), which has minimal distortion, achieves
the best result in terms of WS-PSNR compared with other projections. Code and
data will be released.Comment: Accepted to ICASSP202
Intricacies of the Co spin state in SrCoIrO: an x-ray absorption and magnetic circular dichroism study
We report on a combined soft x-ray absorption and magnetic circular dichroism
(XMCD) study at the Co- on the hybrid 3/5 solid state oxide
SrCoIrO with the KNiF structure. Our data
indicate unambiguously a pure high spin state for the Co
(3) ions with a significant unquenched orbital moment
despite the sizeable elongation of the CoO octahedra. Using quantitative
model calculations based on parameters consistent with our spectra, we have
investigated the stability of this high spin state with respect to the
competing low spin and intermediate spin states.Comment: 7 pages, 4 figure
Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells.
IntroductionAlthough breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors.MethodsParaffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation.ResultsImmunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction of ALDH+/GD2+ cells to differentiate into neural cells of various lineages, along with the observation of neural differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH+ or ALDH+/GD2+ cells could also be induced to differentiate into adipocytes, osteocytes or chondrocytes.ConclusionsOur findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and their CSCs were enriched in ALDH+ and ALDH+/GD2+ subpopulations
Anomalous thermoelectric effects of ZrTe in and beyond the quantum limit
Thermoelectric effects are more sensitive and promising probes to topological
properties of emergent materials, but much less addressed compared to other
physical properties. Zirconium pentatelluride (ZrTe) has inspired active
investigations recently because of its multiple topological nature. We study
the thermoelectric effects of ZrTe in a magnetic field and find several
anomalous behaviors. The Nernst response has a steplike profile near zero field
when the charge carriers are electrons only, suggesting the anomalous Nernst
effect arising from a nontrivial profile of Berry curvature. Both the
thermopower and Nernst signal exhibit exotic peaks in the strong-field quantum
limit. At higher magnetic fields, the Nernst signal has a sign reversal at a
critical field where the thermopower approaches to zero. We propose that these
anomalous behaviors can be attributed to the Landau index inversion, which is
resulted from the competition of the dependence of the Dirac-type
Landau bands and linear- dependence of the Zeeman energy ( is the
magnetic field). Our understanding to the anomalous thermoelectric properties
in ZrTe opens a new avenue for exploring Dirac physics in topological
materials.Comment: 6 pages, 4 figure
Benzotriazolium picrate
In the crystal structure of the title compound, C6H6N3
+·C6H2N3O7
−, anions and cations are linked into chains along [010] by intermolecular N—H⋯O hydrogen bonds. These chains are further stabilized by weak C—H⋯O hydrogen bonds and π–π stacking interactions with a centroid–centroid distance of 3.908 (1) Å
- …