5 research outputs found
Notch activation and downstream targets in embryonic hematopoiesis
La regió de l’aorta-gonada-mesonefros (AGM) és el primer nÃnxol de les
cèl·lules mare hematopoètiques. Està descrit que la via de Notch és necessà ria
per generar artèries i cèl·lules mare hematopoètiques. Les cèl·lules mare
hematopoètiques es generen a partir de les artèries durant el desenvolupament
embrionari. Tenint en compte que els vasos arterials es formen abans que les
cèl·lules mare hematopoètiques, durant molt temps ha estat controvertit si la via
de Notch només indueix la formació d’artèries i en canvi l’abscència de cèl·lules
mare hematopoètiques és un efecte secundari o si per contra, la via de Notch
participa activament en la inducció d’ambdós programes genètics, l’arterial i
l’hematopoètic. Moltes de les funcions descrites de la via de Notch són
conseqüència de l’expressió de les seves dianes transcripcionals: Hes i Hesrelated
(Hrt). No obstant cada cop s’estan identificant noves dianes
transcripcionals de la via de Notch que són especÃfiques de teixit.
En aquesta tesis doctoral, demostrem que l’activació de la via de Notch per part
del lligand Jagged1 és necessà ria per activar el programa hematopoètic però
no cal per establir el programa arterial. Aquest fet demostra que la via de Notch
juga un paper clau i directe en l’hematopoèsi embrionaria. Per sota de la via de
Notch mostrem que els embrions deficients en Hes1 i Hes5 mantenen intacte el
programa arterial. Cal remarcar que també generen més quantitat de cèl·lules
mare hematopoètiques però que no són funcionals. A més tal mutants, tenen
nivells més alts d’expressió dels gens Runx1, Myb i Gata2; els quals són
importants reguladors de l’hematopoèsi. Per acabar demostrem que Notch
activa la transcripció de Gata2 i que HES-1 l’inhibeix. Això genera un
Incoherent Feed-Fordward loop, el qual regula estretament els nivells de Gata2
necessà ris per generar cèl·lules mare hematopoètiques.The aorta-gonad-mesonephros (AGM) is the first Hematopoietic Stem Cell
(HSC) niche. It was previously shown that Notch pathway is required to induce
the arterial fate as well as to generate Hematopoietic Stem Cells. HSC emerge
at the site of arterial vessels during embryonic development. Since arterial fate
precedes HSC generation, it has long been controversial whether Notch
exclusively induces the arterial program and the lack of HSC is a secondary
defect; or Notch is directly involved in activating both genetic programs, arterial
and hematopoietic. The best-characterized Notch targets are Hes and Hesrelated
genes (Hrt) since they are involved in most of described Notch
functions, however there is a growing number of tissue-specific transcriptional
Notch-targets.
In this thesis, we found that Jagged-mediated activation of Notch is required for
the correct execution of the definitive hematopoietic program but not for the
establishment of the arterial fate, thus demonstrating that Notch exerts a
specific hematopoietic function in the embryo. Downstream of Notch pathway,
we also show that embryos deficient for Hes1 and Hes5 alleles contain an intact
arterial program but produce increased numbers of non-functional
hematopoietic stem cells associated to higher levels of the hematopoietic
regulators Runx1, Myb and Gata2. Moreover, Gata2 transcription is positively
regulated by Notch and negatively controlled by HES-1. This creates an
incoherent feed-forward loop that tightly controls Gata2 levels to generate HSC
Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence
Hematopoietic stem cell (HSC) specification occurs in the embryonic aorta and requires Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 701 promoter regions that were candidates to be regulated by Notch in the AGM. One of the most enriched regions corresponded to the Cdca7 gene, which was subsequently confirmed to recruit the RBPj factor but also Notch1 in AGM cells. We found that during embryonic hematopoietic development, expression of Cdca7 is restricted to the hematopoietic clusters of the aorta, and it is strongly up-regulated in the hemogenic population during human embryonic stem cell hematopoietic differentiation in a Notch-dependent manner. Down-regulation of Cdca7 mRNA in cultured AGM cells significantly induces hematopoietic differentiation and loss of the progenitor population. Finally, using loss-of-function experiments in zebrafish, we demonstrate that CDCA7 contributes to HSC emergence in vivo during embryonic development. Thus, our study identifies Cdca7 as an evolutionary conserved Notch target involved in HSC emergence.J. Guiu was a recipient of Formación Personal Investigador (FPI) BES-2008-005708. This research was funded by grants from the Ministerio de EconomÃa y Competitividad, FEDER (SAF2007-60080, PLE2009-0111, SAF2010-15450, and SAF2013-40922R), Red Temática de Investigación Cooperativa en Cáncer (RTICC; RD06/0020/0098 and RD12/0036/0054), Association for International Cancer Research (AICR; 13-0064), Agència de Gestió d’Ajuds Universitaris i de Recerca (AGAUR; 2009SGR-23, CONES2010-0006) to A. Bigas, the Spanish Association against Cancer Research (AECC) to A. Bigas and P. Menendez, Fondo de Investigación Sanitaria (FIS; PI10/00449) to P. Menendez, and ZonMW TOP (40-00812-98-11068) to E. Dzierzak and E. De Pater
Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch
Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal.This work has been supported by the Instituto de Salud Carlos III [PI10/01128], Ministerio de Ciencia e Innovación [ACI2009-0918], Agència de Gestió d'Ajuts Universitaris i de Recerca-Convocatòria Estratègica-2010-0006 and Red Temática de Investigación Cooperativa en Cáncer [RD06/0020/0098, RD12/0036/0054]. The Mar Institute of Medical Research (IMIM) Foundation financed V.R., and she is a recipient of a European Molecular Biology Organization (EMBO) short-term fellowship [ASTF 20-2010]. E.L.-A. is funded by ‘Fundación la Caixa’ (2010) and the Department of Education, Universities and Research of the Basque Government [BFI-2011]. L.L.E. is an investigator of the Spanish National Health System (SNS) [CES08/006
Recommended from our members
Notch signal strength controls cell fate in the haemogenic endothelium.
Acquisition of the arterial and haemogenic endothelium fates concurrently occur in the aorta-gonad-mesonephros (AGM) region prior to haematopoietic stem cell (HSC) generation. The arterial programme depends on Dll4 and the haemogenic endothelium/HSC on Jag1-mediated Notch1 signalling. How Notch1 distinguishes and executes these different programmes in response to particular ligands is poorly understood. By using two Notch1 activation trap mouse models with different sensitivity, here we show that arterial endothelial cells and HSCs originate from distinct precursors, characterized by different Notch1 signal strengths. Microarray analysis on AGM subpopulations demonstrates that the Jag1 ligand stimulates low Notch strength, inhibits the endothelial programme and is permissive for HSC specification. In the absence of Jag1, endothelial cells experience high Dll4-induced Notch activity and select the endothelial programme, thus precluding HSC formation. Interference with the Dll4 signal by ligand-specific blocking antibodies is sufficient to inhibit the endothelial programme and favour specification of the haematopoietic lineage.L.G.-N. was a recipient of Marie Curie Intra-European Fellowship (PIEF-GA-2011- 302226). E.F. and J.G. are recipients of FPI (BES-2011-048360 and BES-2008-005708, respectively). This research was funded by the Ministerio de Economıa y Competitividad (PLE2009-0111, SAF2010-15450, SAF2013-40922-R), Red Tematica de Investigacion Cooperativa en Cancer (RTICC) (RD12/0036/0054), Age`ncia de Gestio d’Ajuds Universitaris i de Recerca (AGAUR; 2014SGR-124) to A.B
Notch signal strength controls cell fate in the haemogenic endothelium.
Acquisition of the arterial and haemogenic endothelium fates concurrently occur in the aorta-gonad-mesonephros (AGM) region prior to haematopoietic stem cell (HSC) generation. The arterial programme depends on Dll4 and the haemogenic endothelium/HSC on Jag1-mediated Notch1 signalling. How Notch1 distinguishes and executes these different programmes in response to particular ligands is poorly understood. By using two Notch1 activation trap mouse models with different sensitivity, here we show that arterial endothelial cells and HSCs originate from distinct precursors, characterized by different Notch1 signal strengths. Microarray analysis on AGM subpopulations demonstrates that the Jag1 ligand stimulates low Notch strength, inhibits the endothelial programme and is permissive for HSC specification. In the absence of Jag1, endothelial cells experience high Dll4-induced Notch activity and select the endothelial programme, thus precluding HSC formation. Interference with the Dll4 signal by ligand-specific blocking antibodies is sufficient to inhibit the endothelial programme and favour specification of the haematopoietic lineage.L.G.-N. was a recipient of Marie Curie Intra-European Fellowship (PIEF-GA-2011- 302226). E.F. and J.G. are recipients of FPI (BES-2011-048360 and BES-2008-005708, respectively). This research was funded by the Ministerio de Economıa y Competitividad (PLE2009-0111, SAF2010-15450, SAF2013-40922-R), Red Tematica de Investigacion Cooperativa en Cancer (RTICC) (RD12/0036/0054), Age`ncia de Gestio d’Ajuds Universitaris i de Recerca (AGAUR; 2014SGR-124) to A.B