23 research outputs found

    Determination of the Chemical Composition of Grape Seed Powders by Gc-ms Analysis

    Get PDF
    Substantiation of the expedience of using of natural antioxidants for inhibiting of oxidative and hydrolytic rancidity in confectionary industry is an urgent direction. The offered way of solving the problem is to use a fat-less grape seed powder, a product, obtained as wastes of vine-making as a source of antioxidants. For this aim, there were realized experimental studies of water-alcohol extracts (ethanol, isopropanol) by the method of gas chromatography with mass-spectroscopic detection (CG-MS) of the chemical composition of grape seed powders under industrial conditions. The obtained data allowed to establish that the studied extracts contain an essential amount of phenol compounds of the different origin: aromatic acids – gallic and egallic acids; resveratrol; flavonoids – quercetin and its derivatives, catechine, epicatechine, campferol and others alongside with esters of fatty acids. These components are strong antioxidants, and their introduction to a grape seed powder must favor inhibition of the oxidizing process of fats in fat-containing confectionary products, so increasing shelf-life of products

    DETERMINATION OF THE CHEMICAL COMPOSITION OF GRAPE SEED POWDERS BY GC-MS ANALYSIS

    Get PDF
    Substantiation of the expedience of using of natural antioxidants for inhibiting of oxidative and hydrolytic rancidity in confectionary industry is an urgent direction. The offered way of solving the problem is to use a fat-less grape seed powder, a product, obtained as wastes of vine-making as a source of antioxidants. For this aim, there were realized experimental studies of water-alcohol extracts (ethanol, isopropanol) by the method of gas chromatography with mass-spectroscopic detection (CG-MS) of the chemical composition of grape seed powders under industrial conditions. The obtained data allowed to establish that the studied extracts contain an essential amount of phenol compounds of the different origin: aromatic acids – gallic and egallic acids; resveratrol; flavonoids – quercetin and its derivatives, catechine, epicatechine, campferol and others alongside with esters of fatty acids. These components are strong antioxidants, and their introduction to a grape seed powder must favor inhibition of the oxidizing process of fats in fat-containing confectionary products, so increasing shelf-life of products

    Π’ΠΏΠ»ΠΈΠ² ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² Π· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… кісточок Π½Π° Π·Π±Π΅Ρ€Π΅ΠΆΠ΅Π½Ρ–ΡΡ‚ΡŒ ΠΆΠΈΡ€Ρ–Π² Ρƒ ΠΊΠΎΠ½Π΄ΠΈΡ‚Π΅Ρ€ΡΡŒΠΊΡ–ΠΉ Π³Π»Π°Π·ΡƒΡ€Ρ–

    Get PDF
    The polyphenol composition of grape seeds powder (GSP) and defatted grape seeds flour (DGSF) in waterΒ­alcohol (ethanol, isopropanol) extracts was studied by the chromatographic method. There was established the content of antioxidants, which are present in the form of phenolic acids (gallic, ellagic), stilbenes (resveratrol) and flavonoids, first of all, flavanols (catechin, epicatechin) and flavonols (kaemferol, myricetin, quercetin and its derivative glycosides). It was shown that the total content of polyphenols reaches a maximum size of about 4.5Β % in gallic equivalent of the powder weight at the extraction of waterΒ­ethanol mixture with ethanol content of 50Β % (w/w). The effect of phenolic antioxidants on peroxide (PV) and acid (AV) values of confectionery fats of lauric and nonΒ­lauric types in the model systems was studied as the markers of the rancidity formation process. It was proved that thanks to a high content of antioxidants in grape powders, the introduction of these powders in the composition of samples significantly slows down the process of autoΒ­oxidation of fats. It was shown that grape powders as vegetable raw material are more stable in terms of catalyzing the process of fats hydrolysis in confectionery glaze. This is evidenced by the data on the activity of lipase enzyme, the magnitude of which is lower in the samples of grape seeds powders – 1.03 and 1.12Β Γ±m3/g for GSP and DGSF, respectively, compared with that of different samples of cocoa powder – 0.84 and 1.87Β Γ±m3/g. The study into changes in acid value of the samples also showed that the addition of GSP and DGSF as the source of antioxidants significantly inhibits the process of hydrolysis of fats to free fatty acids. The obtained results have a practical significance for the improvement of the process of confectionary glaze production in the direction of partial substitution of cocoa powder with grape seeds powders. This contributes to the creation of a product with a high nutritional value and which is more resistant to damage as a result of the process of oxidation and hydrolysis of fatsΠ₯роматографичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ исслСдован ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ состав Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² grape seeds powder (GSP) ΠΈ defatted grape seeds flour (DGSF) Π² Π²ΠΎΠ΄Π½ΠΎ-спиртовых (этанол, ΠΈΠ·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ») экстрактах. УстановлСно содСрТаниС антиоксидантов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Π²ΠΈΠ΄Π΅ Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… кислот (галловая, эллаговая), стилбСнов (рСсвСратрол) ΠΈ Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄ΠΎΠ², ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, Ρ„Π»Π°Π²Π°Π½ΠΎΠ»ΠΎΠ² (ΠΊΠ°Ρ‚Π΅Ρ…ΠΈΠ½, эпикатСхин) ΠΈ Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠ»ΠΎΠ² (ΠΊΠ΅ΠΌΡ„Π΅Ρ€ΠΎΠ», ΠΌΠΈΡ€ΠΈΡ†ΠΈΡ‚ΠΈΠ½, ΠΊΠ²Π΅Ρ€Ρ†Π΅Ρ‚ΠΈΠ½ ΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ΄Ρ‹). Показано, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π΅ содСрТаниС ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΠΎΠ² достигаСт максимальной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΠΊΠΎΠ»ΠΎ 4,5 % Π² Π³Π°Π»Π»ΠΎΠ²ΠΎΠΌ эквивалСнтС ΠΎΡ‚ массы ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΏΡ€ΠΈ экстрагировании Π²ΠΎΠ΄Π½ΠΎ-ΡΡ‚Π°Π½ΠΎΠ»ΡŒΠ½ΠΎΠΉ смСсью с содСрТаниСм этанола 50 % (w/w). Π’ качСствС ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² процСсса образования прогорклости исслСдовано влияниС Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… антиоксидантов Π½Π° пСрСкисноС (PV) ΠΈ кислотноС (AV) числа кондитСрских ΠΆΠΈΡ€ΠΎΠ² Π»Π°ΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ Π½Π΅Π»Π°ΡƒΡ€ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ‚ΠΈΠΏΠΎΠ² Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… систСмах. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ благодаря высокому ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ Π² Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°Ρ… антиоксидантов, Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² Π² состав ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² сущСствСнно замСдляСт процСссы автоокислСния ΠΆΠΈΡ€ΠΎΠ². Показано, Ρ‡Ρ‚ΠΎ Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Π΅ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΈ ΠΊΠ°ΠΊ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΡΡ‹Ρ€ΡŒΠ΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния Π°ΠΊΡ‚ΠΈΠ²ΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° ΠΆΠΈΡ€ΠΎΠ² Π² кондитСрской Π³Π»Π°Π·ΡƒΡ€ΠΈ. Об этом ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π»ΠΈΠΏΠ°Π·Π°, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½ΠΈΠΆΠ΅ Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΈΠ· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Ρ… косточСк - 1,03 ΠΈ 1,12 см3/Π³ для GSP ΠΈ DGSF, соотвСтствСнно, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Π°ΠΊΠΎΠ²ΠΎΠΉ Ρƒ Ρ€Π°Π·Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΊΠ°ΠΊΠ°ΠΎ-ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² - 0,84 ΠΈ 1,87 см3/Π³. ИсслСдованиС измСнСния кислотного числа ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ GSP ΠΈ DGSF ΠΊΠ°ΠΊ источника антиоксидантов Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ процСсс Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° ΠΆΠΈΡ€ΠΎΠ² Π΄ΠΎ свободных ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ практичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ процСсса производства кондитСрской Π³Π»Π°Π·ΡƒΡ€ΠΈ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ частичной Π·Π°ΠΌΠ΅Π½Ρ‹ ΠΊΠ°ΠΊΠ°ΠΎ-ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌΠΈ ΠΈΠ· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Ρ… косточСк. Π­Ρ‚ΠΎ способствуСт созданию ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ цСнности ΠΈ Π±ΠΎΠ»Π΅Π΅ устойчивого ΠΊ ΠΏΠΎΡ€Ρ‡Π΅ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ процСсса окислСния ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° ΠΆΠΈΡ€ΠΎΠ²Π₯Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ дослідТСно ΠΏΠΎΠ»Ρ–Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΈΠΉ склад Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² grape seeds powder (GSP) Ρ– defatted grape seeds flour (DGSF) Π² Π²ΠΎΠ΄Π½ΠΎ-спиртових (Π΅Ρ‚Π°Π½ΠΎΠ», Ρ–Π·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ») Скстрактах. ВстановлСно вміст антиоксидантів, Ρ‰ΠΎ присутні Π² вигляді Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΈΡ… кислот (Π³Π°Π»ΠΎΠ²Π°, Π΅Π»Π°Π³ΠΎΠ²Π°), стилбСнів (рСсвСратрол) Ρ‚Π° Ρ„Π»Π°Π²ΠΎΠ½ΠΎΡ—Π΄Ρ–Π² , насампСрСд, Ρ„Π»Π°Π²Π°Π½ΠΎΠ»Ρ–Π² (ΠΊΠ°Ρ‚Π΅Ρ…Ρ–Π½, Π΅ΠΏΡ–ΠΊΠ°Ρ‚Π΅Ρ…Ρ–Π½) Ρ‚Π° Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠ»Ρ–Π² (ΠΊΠ΅ΠΌΠΏΡ„Π΅Ρ€ΠΎΠ», ΠΌΠΈΡ€ΠΈΡ†ΠΈΡ‚ΠΈΠ½, ΠΊΠ²Π΅Ρ€Ρ†Π΅Ρ‚ΠΈΠ½ Ρ‚Π° ΠΉΠΎΠ³ΠΎ ΠΏΠΎΡ…Ρ–Π΄Π½Ρ– Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ΄ΠΈ). Показано, Ρ‰ΠΎ загальний вміст ΠΏΠΎΠ»Ρ–Ρ„Π΅Π½ΠΎΠ»Ρ–Π² досягає ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΈ - ΠΌΠ°ΠΉΠΆΠ΅ 4,5 % Π² Π³Π°Π»ΠΎΠ²ΠΎΠΌΡƒ Π΅ΠΊΠ²Ρ–Π²Π°Π»Π΅Π½Ρ‚Ρ– Π²Ρ–Π΄ маси ΠΏΠΎΡ€ΠΎΡˆΠΊΡƒ ΠΏΡ€ΠΈ Скстрагуванні Π²ΠΎΠ΄Π½ΠΎ-Π΅Ρ‚Π°Π½ΠΎΠ»ΡŒΠ½ΠΎΡŽ ΡΡƒΠΌΡ–ΡˆΡˆΡŽ Π· вмістом Π΅Ρ‚Π°Π½ΠΎΠ»Ρƒ 50 % (w/w). Π’ якості ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ–Π² процСсу утворСння згірклості, Ρ‰ΠΎ Π·ΡƒΠΌΠΎΠ²Π»Π΅Π½Π° окиснСнням Ρ‚Π° Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·ΠΎΠΌ ΠΆΠΈΡ€Ρ–Π², дослідТСно Π²ΠΏΠ»ΠΈΠ² Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΈΡ… антиоксидантів Π½Π° пСрСкиснС (PV) Ρ‚Π° кислотнС (AV) числа ΠΊΠΎΠ½Π΄ΠΈΡ‚Π΅Ρ€ΡΡŒΠΊΠΈΡ… ΠΆΠΈΡ€Ρ–Π² Π»Π°ΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚Π° Π½Π΅Π»Π°ΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡ–Π² Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΈΡ… систСмах. Π”ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ завдяки високому вмісту Ρƒ Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°Ρ… антиоксидантів, додавання Ρ†ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² Π΄ΠΎ складу Π·Ρ€Π°Π·ΠΊΡ–Π² суттєво ΡƒΠΏΠΎΠ²Ρ–Π»ΡŒΠ½ΡŽΡ” процСси автоокиснСння ΠΆΠΈΡ€Ρ–Π². Показано, Ρ‰ΠΎ Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ– ΠΏΠΎΡ€ΠΎΡˆΠΊΠΈ як рослинна сировина Ρ” Π±Ρ–Π»ΡŒΡˆ ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΈΠΌΠΈ Π· Ρ‚ΠΎΡ‡ΠΊΠΈ Π·ΠΎΡ€Ρƒ Π°ΠΊΡ‚ΠΈΠ²Ρ–Π·Π°Ρ†Ρ–Ρ— процСсу Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Ρƒ ΠΆΠΈΡ€Ρ–Π² Ρƒ ΠΊΠΎΠ½Π΄ΠΈΡ‚Π΅Ρ€ΡΡŒΠΊΡ–ΠΉ Π³Π»Π°Π·ΡƒΡ€Ρ–. ΠŸΡ€ΠΎ Ρ†Π΅ ΡΠ²Ρ–Π΄Ρ‡Π°Ρ‚ΡŒ Π΄Π°Π½Ρ– Π· активності Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρƒ Π»Ρ–ΠΏΠ°Π·Π°, Ρ‰ΠΎ ΠΊΠΎΠ½ΡΡ‚Π°Ρ‚ΡƒΡŽΡ‚ΡŒ Π½ΠΈΠΆΡ‡Ρ– значСння Ρƒ Π·Ρ€Π°Π·ΠΊΠ°Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² Π· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… кісточок – 1,03 Ρ‚Π° 1,12 см3/Π³ для GSP Ρ‚Π° DGSF, Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ, порівняно Π· Ρ‚Π°ΠΊΠΈΠΌΠΈ Ρƒ Ρ€Ρ–Π·Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ… ΠΊΠ°ΠΊΠ°ΠΎ-ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² – 0,84 Ρ‚Π° 1,87 см3/Π³. ДослідТСння Π·ΠΌΡ–Π½ΠΈ кислотного числа Π·Ρ€Π°Π·ΠΊΡ–Π² Ρ‚Π°ΠΊΠΎΠΆ засвідчило, Ρ‰ΠΎ додаванням GSP Ρ‚Π° DGSF як Π΄ΠΆΠ΅Ρ€Π΅Π»Π° антиоксидантів Π·Π½Π°Ρ‡Π½ΠΎ Ρ–Π½Π³Ρ–Π±ΡƒΡ” процСс Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Ρƒ ΠΆΠΈΡ€Ρ–Π² Π΄ΠΎ Π²Ρ–Π»ΡŒΠ½ΠΈΡ… ΠΆΠΈΡ€Π½ΠΈΡ… кислот. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΌΠ°ΡŽΡ‚ΡŒ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π΅ значСння для удосконалСння процСсу Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° ΠΊΠΎΠ½Π΄ΠΈΡ‚Π΅Ρ€ΡΡŒΠΊΠΎΡ— Π³Π»Π°Π·ΡƒΡ€Ρ– Π² напрямку часткової Π·Π°ΠΌΡ–Π½ΠΈ ΠΊΠ°ΠΊΠ°ΠΎ-ΠΏΠΎΡ€ΠΎΡˆΠΊΡƒ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌΠΈ Π· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… кісточок. Π¦Π΅ сприятимС ΡΡ‚Π²ΠΎΡ€Π΅Π½Π½ΡŽ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρƒ ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΎΡ— Ρ…Π°Ρ€Ρ‡ΠΎΠ²ΠΎΡ— цінності Ρ‚Π° Π±Ρ–Π»ΡŒΡˆ стійкого Π΄ΠΎ псування ΠΆΠΈΡ€Ρ–

    Π’ΠΏΠ»ΠΈΠ² ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² Π· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… кісточок Π½Π° Π·Π±Π΅Ρ€Π΅ΠΆΠ΅Π½Ρ–ΡΡ‚ΡŒ ΠΆΠΈΡ€Ρ–Π² Ρƒ ΠΊΠΎΠ½Π΄ΠΈΡ‚Π΅Ρ€ΡΡŒΠΊΡ–ΠΉ Π³Π»Π°Π·ΡƒΡ€Ρ–

    Get PDF
    The polyphenol composition of grape seeds powder (GSP) and defatted grape seeds flour (DGSF) in waterΒ­alcohol (ethanol, isopropanol) extracts was studied by the chromatographic method. There was established the content of antioxidants, which are present in the form of phenolic acids (gallic, ellagic), stilbenes (resveratrol) and flavonoids, first of all, flavanols (catechin, epicatechin) and flavonols (kaemferol, myricetin, quercetin and its derivative glycosides). It was shown that the total content of polyphenols reaches a maximum size of about 4.5Β % in gallic equivalent of the powder weight at the extraction of waterΒ­ethanol mixture with ethanol content of 50Β % (w/w). The effect of phenolic antioxidants on peroxide (PV) and acid (AV) values of confectionery fats of lauric and nonΒ­lauric types in the model systems was studied as the markers of the rancidity formation process. It was proved that thanks to a high content of antioxidants in grape powders, the introduction of these powders in the composition of samples significantly slows down the process of autoΒ­oxidation of fats. It was shown that grape powders as vegetable raw material are more stable in terms of catalyzing the process of fats hydrolysis in confectionery glaze. This is evidenced by the data on the activity of lipase enzyme, the magnitude of which is lower in the samples of grape seeds powders – 1.03 and 1.12Β Γ±m3/g for GSP and DGSF, respectively, compared with that of different samples of cocoa powder – 0.84 and 1.87Β Γ±m3/g. The study into changes in acid value of the samples also showed that the addition of GSP and DGSF as the source of antioxidants significantly inhibits the process of hydrolysis of fats to free fatty acids. The obtained results have a practical significance for the improvement of the process of confectionary glaze production in the direction of partial substitution of cocoa powder with grape seeds powders. This contributes to the creation of a product with a high nutritional value and which is more resistant to damage as a result of the process of oxidation and hydrolysis of fatsΠ₯роматографичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ исслСдован ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ состав Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² grape seeds powder (GSP) ΠΈ defatted grape seeds flour (DGSF) Π² Π²ΠΎΠ΄Π½ΠΎ-спиртовых (этанол, ΠΈΠ·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ») экстрактах. УстановлСно содСрТаниС антиоксидантов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Π²ΠΈΠ΄Π΅ Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… кислот (галловая, эллаговая), стилбСнов (рСсвСратрол) ΠΈ Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄ΠΎΠ², ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, Ρ„Π»Π°Π²Π°Π½ΠΎΠ»ΠΎΠ² (ΠΊΠ°Ρ‚Π΅Ρ…ΠΈΠ½, эпикатСхин) ΠΈ Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠ»ΠΎΠ² (ΠΊΠ΅ΠΌΡ„Π΅Ρ€ΠΎΠ», ΠΌΠΈΡ€ΠΈΡ†ΠΈΡ‚ΠΈΠ½, ΠΊΠ²Π΅Ρ€Ρ†Π΅Ρ‚ΠΈΠ½ ΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ΄Ρ‹). Показано, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π΅ содСрТаниС ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΠΎΠ² достигаСт максимальной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΠΊΠΎΠ»ΠΎ 4,5 % Π² Π³Π°Π»Π»ΠΎΠ²ΠΎΠΌ эквивалСнтС ΠΎΡ‚ массы ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΏΡ€ΠΈ экстрагировании Π²ΠΎΠ΄Π½ΠΎ-ΡΡ‚Π°Π½ΠΎΠ»ΡŒΠ½ΠΎΠΉ смСсью с содСрТаниСм этанола 50 % (w/w). Π’ качСствС ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² процСсса образования прогорклости исслСдовано влияниС Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… антиоксидантов Π½Π° пСрСкисноС (PV) ΠΈ кислотноС (AV) числа кондитСрских ΠΆΠΈΡ€ΠΎΠ² Π»Π°ΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ Π½Π΅Π»Π°ΡƒΡ€ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ‚ΠΈΠΏΠΎΠ² Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… систСмах. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ благодаря высокому ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ Π² Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°Ρ… антиоксидантов, Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² Π² состав ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² сущСствСнно замСдляСт процСссы автоокислСния ΠΆΠΈΡ€ΠΎΠ². Показано, Ρ‡Ρ‚ΠΎ Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Π΅ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΈ ΠΊΠ°ΠΊ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΡΡ‹Ρ€ΡŒΠ΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния Π°ΠΊΡ‚ΠΈΠ²ΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° ΠΆΠΈΡ€ΠΎΠ² Π² кондитСрской Π³Π»Π°Π·ΡƒΡ€ΠΈ. Об этом ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π»ΠΈΠΏΠ°Π·Π°, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½ΠΈΠΆΠ΅ Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΈΠ· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Ρ… косточСк - 1,03 ΠΈ 1,12 см3/Π³ для GSP ΠΈ DGSF, соотвСтствСнно, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Π°ΠΊΠΎΠ²ΠΎΠΉ Ρƒ Ρ€Π°Π·Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΊΠ°ΠΊΠ°ΠΎ-ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² - 0,84 ΠΈ 1,87 см3/Π³. ИсслСдованиС измСнСния кислотного числа ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ GSP ΠΈ DGSF ΠΊΠ°ΠΊ источника антиоксидантов Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ процСсс Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° ΠΆΠΈΡ€ΠΎΠ² Π΄ΠΎ свободных ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ практичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ процСсса производства кондитСрской Π³Π»Π°Π·ΡƒΡ€ΠΈ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ частичной Π·Π°ΠΌΠ΅Π½Ρ‹ ΠΊΠ°ΠΊΠ°ΠΎ-ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌΠΈ ΠΈΠ· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹Ρ… косточСк. Π­Ρ‚ΠΎ способствуСт созданию ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ цСнности ΠΈ Π±ΠΎΠ»Π΅Π΅ устойчивого ΠΊ ΠΏΠΎΡ€Ρ‡Π΅ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ процСсса окислСния ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° ΠΆΠΈΡ€ΠΎΠ²Π₯Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ дослідТСно ΠΏΠΎΠ»Ρ–Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΈΠΉ склад Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² grape seeds powder (GSP) Ρ– defatted grape seeds flour (DGSF) Π² Π²ΠΎΠ΄Π½ΠΎ-спиртових (Π΅Ρ‚Π°Π½ΠΎΠ», Ρ–Π·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ») Скстрактах. ВстановлСно вміст антиоксидантів, Ρ‰ΠΎ присутні Π² вигляді Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΈΡ… кислот (Π³Π°Π»ΠΎΠ²Π°, Π΅Π»Π°Π³ΠΎΠ²Π°), стилбСнів (рСсвСратрол) Ρ‚Π° Ρ„Π»Π°Π²ΠΎΠ½ΠΎΡ—Π΄Ρ–Π² , насампСрСд, Ρ„Π»Π°Π²Π°Π½ΠΎΠ»Ρ–Π² (ΠΊΠ°Ρ‚Π΅Ρ…Ρ–Π½, Π΅ΠΏΡ–ΠΊΠ°Ρ‚Π΅Ρ…Ρ–Π½) Ρ‚Π° Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠ»Ρ–Π² (ΠΊΠ΅ΠΌΠΏΡ„Π΅Ρ€ΠΎΠ», ΠΌΠΈΡ€ΠΈΡ†ΠΈΡ‚ΠΈΠ½, ΠΊΠ²Π΅Ρ€Ρ†Π΅Ρ‚ΠΈΠ½ Ρ‚Π° ΠΉΠΎΠ³ΠΎ ΠΏΠΎΡ…Ρ–Π΄Π½Ρ– Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ΄ΠΈ). Показано, Ρ‰ΠΎ загальний вміст ΠΏΠΎΠ»Ρ–Ρ„Π΅Π½ΠΎΠ»Ρ–Π² досягає ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΈ - ΠΌΠ°ΠΉΠΆΠ΅ 4,5 % Π² Π³Π°Π»ΠΎΠ²ΠΎΠΌΡƒ Π΅ΠΊΠ²Ρ–Π²Π°Π»Π΅Π½Ρ‚Ρ– Π²Ρ–Π΄ маси ΠΏΠΎΡ€ΠΎΡˆΠΊΡƒ ΠΏΡ€ΠΈ Скстрагуванні Π²ΠΎΠ΄Π½ΠΎ-Π΅Ρ‚Π°Π½ΠΎΠ»ΡŒΠ½ΠΎΡŽ ΡΡƒΠΌΡ–ΡˆΡˆΡŽ Π· вмістом Π΅Ρ‚Π°Π½ΠΎΠ»Ρƒ 50 % (w/w). Π’ якості ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ–Π² процСсу утворСння згірклості, Ρ‰ΠΎ Π·ΡƒΠΌΠΎΠ²Π»Π΅Π½Π° окиснСнням Ρ‚Π° Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·ΠΎΠΌ ΠΆΠΈΡ€Ρ–Π², дослідТСно Π²ΠΏΠ»ΠΈΠ² Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΈΡ… антиоксидантів Π½Π° пСрСкиснС (PV) Ρ‚Π° кислотнС (AV) числа ΠΊΠΎΠ½Π΄ΠΈΡ‚Π΅Ρ€ΡΡŒΠΊΠΈΡ… ΠΆΠΈΡ€Ρ–Π² Π»Π°ΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚Π° Π½Π΅Π»Π°ΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡ–Π² Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΈΡ… систСмах. Π”ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ завдяки високому вмісту Ρƒ Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°Ρ… антиоксидантів, додавання Ρ†ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² Π΄ΠΎ складу Π·Ρ€Π°Π·ΠΊΡ–Π² суттєво ΡƒΠΏΠΎΠ²Ρ–Π»ΡŒΠ½ΡŽΡ” процСси автоокиснСння ΠΆΠΈΡ€Ρ–Π². Показано, Ρ‰ΠΎ Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½Ρ– ΠΏΠΎΡ€ΠΎΡˆΠΊΠΈ як рослинна сировина Ρ” Π±Ρ–Π»ΡŒΡˆ ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΈΠΌΠΈ Π· Ρ‚ΠΎΡ‡ΠΊΠΈ Π·ΠΎΡ€Ρƒ Π°ΠΊΡ‚ΠΈΠ²Ρ–Π·Π°Ρ†Ρ–Ρ— процСсу Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Ρƒ ΠΆΠΈΡ€Ρ–Π² Ρƒ ΠΊΠΎΠ½Π΄ΠΈΡ‚Π΅Ρ€ΡΡŒΠΊΡ–ΠΉ Π³Π»Π°Π·ΡƒΡ€Ρ–. ΠŸΡ€ΠΎ Ρ†Π΅ ΡΠ²Ρ–Π΄Ρ‡Π°Ρ‚ΡŒ Π΄Π°Π½Ρ– Π· активності Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρƒ Π»Ρ–ΠΏΠ°Π·Π°, Ρ‰ΠΎ ΠΊΠΎΠ½ΡΡ‚Π°Ρ‚ΡƒΡŽΡ‚ΡŒ Π½ΠΈΠΆΡ‡Ρ– значСння Ρƒ Π·Ρ€Π°Π·ΠΊΠ°Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² Π· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… кісточок – 1,03 Ρ‚Π° 1,12 см3/Π³ для GSP Ρ‚Π° DGSF, Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ, порівняно Π· Ρ‚Π°ΠΊΠΈΠΌΠΈ Ρƒ Ρ€Ρ–Π·Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ… ΠΊΠ°ΠΊΠ°ΠΎ-ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² – 0,84 Ρ‚Π° 1,87 см3/Π³. ДослідТСння Π·ΠΌΡ–Π½ΠΈ кислотного числа Π·Ρ€Π°Π·ΠΊΡ–Π² Ρ‚Π°ΠΊΠΎΠΆ засвідчило, Ρ‰ΠΎ додаванням GSP Ρ‚Π° DGSF як Π΄ΠΆΠ΅Ρ€Π΅Π»Π° антиоксидантів Π·Π½Π°Ρ‡Π½ΠΎ Ρ–Π½Π³Ρ–Π±ΡƒΡ” процСс Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Ρƒ ΠΆΠΈΡ€Ρ–Π² Π΄ΠΎ Π²Ρ–Π»ΡŒΠ½ΠΈΡ… ΠΆΠΈΡ€Π½ΠΈΡ… кислот. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΌΠ°ΡŽΡ‚ΡŒ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π΅ значСння для удосконалСння процСсу Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° ΠΊΠΎΠ½Π΄ΠΈΡ‚Π΅Ρ€ΡΡŒΠΊΠΎΡ— Π³Π»Π°Π·ΡƒΡ€Ρ– Π² напрямку часткової Π·Π°ΠΌΡ–Π½ΠΈ ΠΊΠ°ΠΊΠ°ΠΎ-ΠΏΠΎΡ€ΠΎΡˆΠΊΡƒ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌΠΈ Π· Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΈΡ… кісточок. Π¦Π΅ сприятимС ΡΡ‚Π²ΠΎΡ€Π΅Π½Π½ΡŽ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρƒ ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΎΡ— Ρ…Π°Ρ€Ρ‡ΠΎΠ²ΠΎΡ— цінності Ρ‚Π° Π±Ρ–Π»ΡŒΡˆ стійкого Π΄ΠΎ псування ΠΆΠΈΡ€Ρ–

    ВизначСння антиоксидантної ємності ΠΌΠ°Ρ€ΠΌΠ΅Π»Π°Π΄Ρƒ Ρ‚Π° ΠΌΠ°Ρ€ΡˆΠΌΠ΅Π»ΠΎΡƒ

    Get PDF
    Creation of functional foods with various plant additives as a preventive means of population antioxidant protection programs is an important task, the solution of which is impossible without a preliminary assessment of antioxidant properties of food components – plant material. For this purpose, the antioxidant capacity of plant additives of apples, quince, grapes, pumpkins, carrots, rose hips, sea buckthorn, Sudanese rose, black chokeberry, obtained by cryogenic technologies and productsΒ  with them – fruit jelly and marshmallow was investigated by galvanostatic coulometry. It was found that the TAC of cryopastes increases in the row: pumpkins<carrots<quince<apples<grapes from 25 to 550 C/100 g. The TAC of cryopowders increases in the row: grapes<black chokeberry<Sudanese rose<sea buckthorn<rose hips from 663 to 4400 C/100 g. The values correlate with the content of the main classes of antioxidants in these cryoadditives. It was determined that marmalade with the addition of carrot and pumpkin cryopastes has the lowest bromine TAC. Additional introduction of cryopowders in marmalade samples with cryopastes in an amount 1.5 % increases the TAC of marmalade by 3.5–10 times. It is shown that the use of waterΒ­alcohol extracts as additives with the addition of 1 % citric acid provides the samples of marshmallow with more pronounced antioxidant properties.The calculations, based on the additive scheme show that the functional properties of the products are due to the antioxidant properties of the additives.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π³Π°Π»ΡŒΠ²Π°Π½ΠΎΡΡ‚Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠΉ ΠΊΡƒΠ»ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° антиоксидантная Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ€ΠΌΠ΅Π»Π°Π΄Π° ΠΆΠ΅Π»Π΅ΠΉΠ½ΠΎ-Ρ„Ρ€ΡƒΠΊΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ ΠΌΠ°Ρ€ΡˆΠΌΠ΅Π»ΠΎΡƒ с Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ ΠΈΠ· яблок, Π°ΠΉΠ²Ρ‹, Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π°, Ρ‚Ρ‹ΠΊΠ²Ρ‹, ΠΌΠΎΡ€ΠΊΠΎΠ²ΠΈ, шиповника, ΠΎΠ±Π»Π΅ΠΏΠΈΡ…ΠΈ, суданской Ρ€ΠΎΠ·Ρ‹, Ρ‡Π΅Ρ€Π½ΠΎΠΏΠ»ΠΎΠ΄Π½ΠΎΠΉ рябины, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎ ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½Ρ‹ΠΌ тСхнологиям. На основании расчСтов ΠΏΠΎ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠΉ схСмС ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ свойства ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ антиоксидантными свойствами Π²Π²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Π΄ΠΎΠ±Π°Π²ΠΎΠΊ.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π³Π°Π»ΡŒΠ²Π°Π½ΠΎΡΡ‚Π°Ρ‚ΠΈΡ‡Π½ΠΎΡ— ΠΊΡƒΠ»ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ— Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ антиоксидантну Ρ”ΠΌΠ½Ρ–ΡΡ‚ΡŒ ΠΌΠ°Ρ€ΠΌΠ΅Π»Π°Π΄Ρƒ ΠΆΠ΅Π»Π΅ΠΉΠ½ΠΎ-Ρ„Ρ€ΡƒΠΊΡ‚ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚Π° ΠΌΠ°Ρ€ΡˆΠΌΠ΅Π»ΠΎΡƒ Π· рослинними Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ Π· яблук, Π°ΠΉΠ²ΠΈ, Π²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Ρƒ, Π³Π°Ρ€Π±ΡƒΠ·Π°, ΠΌΠΎΡ€ΠΊΠ²ΠΈ, шипшини, ΠΎΠ±Π»Ρ–ΠΏΠΈΡ…ΠΈ, ΡΡƒΠ΄Π°Π½ΡΡŒΠΊΠΎΡ— троянди, Ρ‡ΠΎΡ€Π½ΠΎΠΏΠ»Ρ–Π΄Π½ΠΎΡ— Π³ΠΎΡ€ΠΎΠ±ΠΈΠ½ΠΈ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π·Π° ΠΊΡ€Ρ–ΠΎΠ³Π΅Π½Π½ΠΈΠΌΠΈ тСхнологіями. На підставі Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡ–Π², які Π±Π°Π·ΡƒΡŽΡ‚ΡŒΡΡ Π½Π° Π°Π΄ΠΈΡ‚ΠΈΠ²Π½Ρ–ΠΉ схСмі, ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½Ρ– властивості Π²ΠΈΡ€ΠΎΠ±Ρ–Π² ΠΎΠ±ΡƒΠΌΠΎΠ²Π»Π΅Π½Ρ– антиоксидантними властивостями Π²Π²Π΅Π΄Π΅Π½ΠΈΡ… Π΄ΠΎΠ±Π°Π²ΠΎΠΊ

    Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎΡ— ΠΌΠΎΠ΄Π΅Π»Ρ– одСрТання ΠΏΡ–Π½ΠΎΠ΅ΠΌΡƒΠ»ΡŒΡΡ–ΠΉ Π· ΡΡƒΠΌΡ–ΡˆΡ– сухої Тировмісної Ρ‚Π° Ρ—Ρ— Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π΅ підтвСрдТСння

    Get PDF
    We developed a theoretical model of the Pickering-steric stabilization of whipped emulsions structure with a low fat content, obtained from a dry fat-containing mixture. It was experimentally proven that the yield shear stress of a whipped emulsion is determined by the degree of destabilization of fatty particles. It is shown that in order to ensure the full degree of destabilization of fatty particles, it is necessary that 5.0...7.0 g of oil is introduced with 3.0Β g of distilled monoglycerides and 0.08…0.1Β g of soy lecithin. The destabilized fatty particles are capable of adhesion to air bubbles thus providing for the Pickering-stabilization of a whipped emulsion. It was established that at low content of oil in the system (5.0...7.0Β %), it is necessary to combine the Pickering stabilization with the steric stabilization. Steric stabilization in a whipped emulsion is implemented the complex formation of sodium caseinate and kappa-carrageenan, increasing the yield shear stress of the interface adsorption layers.Whipped emulsions with a large foaming capacity and yield shear stress are obtained from a dry fat-containing mixture. For this purpose, it is necessary to provide, during crystallization of the fatty phase, a contact with white sugar. This approach ensures formation of the interface adsorption layers and partial wetting the fatty particles (an edge angle of wetting is 25.0Β±2.0Β°). The proposed approach is named the quasi-emulsification. Introduction to sunflower oil of 30…37.5Β % of distilled monoglycerides of fatty acids provides the obtaining of dry loose fat mixtures. New technology that we propose for obtaining the dry mixtures is characterized by energy efficiency because of the absence of operation of drying the emulsion. Using the developed technology makes it possible to receive whipped emulsions with the foaming capacity that is 1.7…2.0Β times higher than that of the products-analogues available in the Ukrainian market.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° тСорСтичСская модСль ΠŸΠΈΠΊΠ΅Ρ€ΠΈΠ½Π³-стСричСской стабилизации структуры ΠΏΠ΅Π½ΠΎΡΠΌΡƒΠ»ΡŒΡΠΈΠΈ с Π½ΠΈΠ·ΠΊΠΈΠΌ содСрТаниСм ΠΆΠΈΡ€Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΈΠ· сухой смСси. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ΅ напряТСниС сдвига ΠΏΠ΅Π½ΠΎΡΠΌΡƒΠ»ΡŒΡΠΈΠΈ опрСдСляСтся ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ дСстабилизации ΠΆΠΈΡ€ΠΎΠ²Ρ‹Ρ… частиц, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ ΠŸΠΈΠΊΠ΅Ρ€ΠΈΠ½Π³ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΠ΅Π½ΠΎΡΠΌΡƒΠ»ΡŒΡΠΈΠΈ. РСализация комплСксообразования ΠΊΠ°Π·Π΅ΠΈΠ½Π°Ρ‚Π° натрия ΠΈ ΠΊΠ°ΠΏΠΏΠ°-ΠΊΠ°Ρ€Π°Π³ΠΈΠ½Π°Π½Π° обСспСчиваСт ΡΡ‚Π΅Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΠ΅Π½ΠΎΡΠΌΡƒΠ»ΡŒΡΠΈΠΈ Π·Π° счСт увСличСния ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ напряТСния сдвига ΠΌΠ΅ΠΆΡ„Π°Π·Π½Ρ‹Ρ… адсорбционных слоСвРозроблСно Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρƒ модСль ΠŸΡ–ΠΊΠ΅Ρ€Ρ–Π½Π³-стСричної стабілізації структури ΠΏΡ–Π½ΠΎΠ΅ΠΌΡƒΠ»ΡŒΡΡ–ΠΉ Π· низьким вмістом ΠΆΠΈΡ€Ρƒ, ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΎΡ— Ρ–Π· сухої ΡΡƒΠΌΡ–ΡˆΡ–. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ Π³Ρ€Π°Π½ΠΈΡ‡Π½Π΅ напруТСння зсуву ΠΏΡ–Π½ΠΎΠ΅ΠΌΡƒΠ»ΡŒΡΡ–Ρ— Π²ΠΈΠ·Π½Π°Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ ступСнСм дСстабілізації ΠΆΠΈΡ€ΠΎΠ²ΠΈΡ… частинок, які Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‚ΡŒ ΠŸΡ–ΠΊΠ΅Ρ€Ρ–Π½Π³ ΡΡ‚Π°Π±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–ΡŽ ΠΏΡ–Π½ΠΎΠ΅ΠΌΡƒΠ»ΡŒΡΡ–Ρ—. РСалізація комплСксоутворСння ΠΊΠ°Π·Π΅Ρ—Π½Π°Ρ‚Ρƒ Π½Π°Ρ‚Ρ€Ρ–ΡŽ Ρ‚Π° ΠΊΠ°ΠΏΠ°-ΠΊΠ°Ρ€Π°Π³Ρ–Π½Π°Π½Ρƒ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” стСричну ΡΡ‚Π°Π±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–ΡŽ ΠΏΡ–Π½ΠΎΠ΅ΠΌΡƒΠ»ΡŒΡΡ–Ρ— Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ Π³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ напруТСння зсуву ΠΌΡ–ΠΆΡ„Π°Π·Π½ΠΈΡ… адсорбційних ΡˆΠ°Ρ€Ρ–

    Development of Low-Cost Arduino-Based Equipment for Analytical and Educational Applications

    No full text
    A modern microcontroller Arduino platform is often used to create electronic devices with the ability to receive signals from various digital and analog sensors, to perform further primary processing of information to be transferred to a computer, as well as to control various devices. This versatility makes it possible to create low-cost equipment for analytical and educational applications on these platforms. As an example, this white paper describes the benefits of using Arduino microcontroller boards to create two powerful and inexpensive interfaces for computers and laboratory equipment for automating analytical chemistry laboratories. The first one is a device for carrying out coulometric titration in galvanostatic mode with potentiometric or amperometric indication of the titration end point. The instrument is used to determine the concentration of individual substances and the total antioxidant capacity of food systems. Another development is a device for determining the water activity of food systems with a capacitive sensor for determining relative humidity. Both types of measurement equipment use Arduino One or Nano microcontrollers in combination with various controls for analog signal measurement, A/D conversion, and indication. The measured values are monitored in real time by transferring information to a personal computer via a USB port under the control of the developed software. The effective use of the developed devices is presented on the example of measurements of foodstuff samples when obtaining validated data

    A Perspective of Applications of Wine Pomace in Flour-Containing Foods: A Mini-Review

    No full text
    Wine pomace, also mentioned as grape pomace (GP), is a byproduct of the wine industry, containing about 50% grape skins, 25% grape seeds and 25% stems. These wastes are of great value and great potential as a source of biologically active compounds. This opens up new prospects for the rational use of GP in the food industry. It is no coincidence that numerous new technologies for processing these byproducts have recently emerged to create a wide range of diverse new food products by enriching traditional foods with antioxidants, dietary fiber and mineral compounds. The most popular GP processing products are extracts and powders. Powders do not require special storage conditions, and they are highly adaptable, mixing well with other types of food raw materials, especially loose ones. Therefore, they are widely used in such products as bread, cookies, pasta, muffins, etc. Grape powders improve the structure of the dough, slow down the oxidation of fats, for example, in cookies, and increase the nutritional value of flour products. Finally, we will discuss these perspectives on the use of grape pomace as an ingredient in the formulation of flour-containing food products

    Spectroscopic Studies of Interactions of Iron Oxide Nanoparticles with Ovalbumin Molecules

    No full text
    Recent studies show the possibility of using iron oxide nanoparticles as a food additive with certain functional and technological properties. However, when developing technologies for food products, the interaction of these particles with the main components of the food matrix, in particular proteins, takes on special significance. The aim of the present research was to study the interaction of iron oxide nanoparticles with ovalbumin molecules. Fourier-transform infrared and fluorescence spectroscopy were used to study interaction between iron oxide nanoparticles and ovalbumin molecules. It was found that the interaction of iron oxide nanoparticles with ovalbumin molecules occurs via a mechanism of static quenching with the formation of an intermolecular nonfluorescent complex that changes the native structure of the protein. The binding constant varied from 3.6 × 104 to 4.1 × 104 L·mol−1 depending on the pH value of the medium and temperature. The calculated thermodynamic parameters of binding indicate the spontaneity of the process with the predominance of the enthalpy factor. The interaction between iron nanoparticles and ovalbumin occurred mainly due to the presence of electrotatic forces. The obtained data on the mechanism of interaction of iron oxide nanoparticles with proteins should be taken into account when developing food technologies to control functional properties of products

    Evaluation of the Intake of Vitamin D in Daily Food Rations by Students

    No full text
    Over the past two years, a significant number of studies and statistical reports have appeared that prove the relationship between the level of vitamin D in the body and the severity of COVID-19. The main sources of vitamin D in the human body are food and sunlight. The purpose of this study was to evaluate the intake of vitamin D in daily food rations by the students. As an applied aspect, consider the effect of the frequency of consumption of vitamin D-containing foods on the occurrence of symptoms of allergic diseases. The study was a cross-sectional descriptive survey of students from two universities in the city Kharkiv (Ukraine). The data collection was carried out by a conducting questionnaire with three sections: frequency of consumption for 22 vitamin D-containing foods, identification of allergic symptoms, and an estimate of the average duration of exposure time to sunlight by season. The survey suggests that the rations of students are poor for consuming products vitamin D-containing foods. The classification of these products was carried out using statistical analysis of data and chemometric techniques. There was a lack of consumption of vitamin D-containing foods and a critical time spent in sunlight, regardless of the season. At the same time, a positive correlation between the presence of vitamin D deficiency in young people and a high percentage of respondents with symptoms of allergic diseases was obtained
    corecore