300 research outputs found

    Direct extraction of transversity and its accompanying T-odd distribution from the unpolarized and single-polarized Drell-Yan processes

    Full text link
    The Drell-Yan (DY) processes with unpolarized colliding hadrons and with the single transversally polarized hadron are considered. The possibility of direct (without any model assumptions) extraction of both transversity and its accompanying T-odd parton distribution functions (PDF) is discussed. For DY processes measurements planned at GSI the preliminary estimations demonstrate that it is quite real to extract both transversity and its accompanying T-odd PDF in the PAX conditions

    Monte-Carlo simulation of events with Drell-Yan lepton pairs from antiproton-proton collisions

    Full text link
    The complete knowledge of the nucleon spin structure at leading twist requires also addressing the transverse spin distribution of quarks, or transversity, which is yet unexplored because of its chiral-odd nature. Transversity can be best extracted from single-spin asymmetries in fully polarized Drell-Yan processes with antiprotons, where valence contributions are involved anyway. Alternatively, in single-polarized Drell-Yan the transversity happens convoluted with another chiral-odd function, which is likely to be responsible for the well known (and yet unexplained) violation of the Lam-Tung sum rule in the corresponding unpolarized cross section. We present Monte-Carlo simulations for the unpolarized and single-polarized Drell-Yan pˉp()μ+μX\bar{p} p^{(\uparrow)} \to \mu^+ \mu^- X at different center-of-mass energies in both configurations where the antiproton beam hits a fixed proton target or it collides on another proton beam. The goal is to estimate the minimum number of events needed to extract the above chiral-odd distributions from future measurements at the HESR ring at GSI. It is important to study the feasibility of such experiments at HESR in order to demonstrate that interesting spin physics can be explored already using unpolarized antiprotons.Comment: Deeply revised text with improved discussion of kinematics and results; added one table; 12 figures. Accepted for publication in Phys. Rev.

    Brain plasticity mechanisms underlying motor control reorganization: Pilot longitudinal study on post-stroke subjects

    Get PDF
    Functional Electrical Stimulation (FES) has demonstrated to improve walking ability and to induce the carryover effect, long-lasting persisting improvement. Functional magnetic resonance imaging has been used to investigate effective connectivity differences and longitudinal changes in a group of chronic stroke patients that attended a FES-based rehabilitation program for foot-drop correction, distinguishing between carryover effect responders and non-responders, and in comparison with a healthy control group. Bayesian hierarchical procedures were employed, involving nonlinear models at within-subject level—dynamic causal models—and linear models at between-subjects level. Selected regions of interest were primary sensorimotor cortices (M1, S1), supplementary motor area (SMA), and angular gyrus. Our results suggest the following: (i) The ability to correctly plan the movement and integrate proprioception information might be the features to update the motor control loop, towards the carryover effect, as indicated by the reduced sensitivity to pro-prioception input to S1 of FES non-responders; (ii) FES-related neural plasticity supports the active inference account for motor control, as indicated by the modulation of SMA and M1 connections to S1 area; (iii) SMA has a dual role of higher order motor processing unit responsible for complex movements, and a superintendence role in suppressing standard motor plans as external conditions changes

    Effects of azimuth-symmetric acceptance cutoffs on the measured asymmetry in unpolarized Drell-Yan fixed target experiments

    Get PDF
    Fixed-target unpolarized Drell-Yan experiments often feature an acceptance depending on the polar angle of the lepton tracks in the laboratory frame. Typically leptons are detected in a defined angular range, with a dead zone in the forward region. If the cutoffs imposed by the angular acceptance are independent of the azimuth, at first sight they do not appear dangerous for a measurement of the cos(2\phi)-asymmetry, relevant because of its association with the violation of the Lam-Tung rule and with the Boer-Mulders function. On the contrary, direct simulations show that up to 10 percent asymmetries are produced by these cutoffs. These artificial asymmetries present qualitative features that allow them to mimic the physical ones. They introduce some model-dependence in the measurements of the cos(2\phi)-asymmetry, since a precise reconstruction of the acceptance in the Collins-Soper frame requires a Monte Carlo simulation, that in turn requires some detailed physical input to generate event distributions. Although experiments in the eighties seem to have been aware of this problem, the possibility of using the Boer-Mulders function as an input parameter in the extraction of Transversity has much increased the requirements of precision on this measurement. Our simulations show that the safest approach to these measurements is a strong cutoff on the Collins-Soper polar angle. This reduces statistics, but does not necessarily decrease the precision in a measurement of the Boer-Mulders function.Comment: 13 pages, 14 figure

    Primer aislamiento de Mycobacterium bovis de búfalo del nordeste argentino

    Get PDF
    Para detectar búfalos infectados con Mycobacterium bovis se realizaron pruebas tuberculínicas intradérmicas a 402 búfalos de raza Murrah del nordeste argentino. Cuatro animales resultaron positivos y seis sospechosos a la prueba ano–caudal simple, de los cuales cinco fueron positivos a la prueba cervical comparada. Se realizó necropsia a una hembra de 9 años que había reaccionado positivamente a ambas pruebas, en la que se observó sólo un ganglio retromamario afectado con necrosis caseosa. A partir del mismo se aisló M. bovis espoligotipo 34, que es el más frecuente en los aislamientos provenientes del ganado bovino de la zona. Se destaca la ubicación del linfonódulo afectado para tenerla en cuenta en las necropsias de la especie bubalina

    Extraction of the pion distribution amplitude from polarized muon pair production

    Get PDF
    We consider the production of muon pairs from the scattering of pions on longitudinally polarized protons. We calculate the cross section and the single spin asymmetry for this process, taking into account pion bound state effects. We work in the kinematic region where the photon has a large longitudinal momentum fraction, which allows us to treat the bound state problem perturbatively. Our predictions are directly proportional to the pion distribution amplitude. A measurement of the polarized Drell-Yan cross section thus allows the determination of the shape of the pion distribution amplitude.Comment: 13 pages, using revtex, two figures added separately as one uuencoded Z-compressed fil

    Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results

    Get PDF
    BACKGROUND: Recovery of therapeutic or functional ambulatory capacity in post-stroke patients is a primary goal of rehabilitation. Wearable powered exoskeletons allow patients with gait dysfunctions to perform over-ground gait training, even immediately after the acute event.AIM: To investigate the feasibility and the clinical effects of an over-ground walking training with a wearable powered exoskeleton in sub-acute and chronic stroke patients.DESIGN: Prospective, pilot pre-post, open label, non-randomized experimental study.SETTING: A single neurological rehabilitation center for inpatients and outpatients.POPULATION: Twenty-three post-stroke patients were enrolled: 12 sub-acute (mean age: 43.8\ub113.3 years, 5 male and 7 female, 7 right hemiparesis and 5 left hemiparesis) and 11 chronic (mean age: 55.5\ub115.9 years, 7 male and 4 female, 4 right hemiparesis and 7 left hemiparesis) patients.METHODS: Patients underwent 12 sessions (60 min/session, 3 times/week) of walking rehabilitation training using Ekso\u2122, a wearable bionic suit that enables individuals with lower extremity disabilities and minimal forearm strength to stand up, sit down and walk over a flat hard surface with a full weight-bearing reciprocal gait. Clinical evaluations were performed at the beginning of the training period (t0), after 6 sessions (t1) and after 12 sessions (t2) and were based on the Ashworth scale, Motricity Index, Trunk Control Test, Functional Ambulation Scale, 10-Meter Walking Test, 6-Minute Walking Test, and Walking Handicap Scale. Wilcoxon's test (P<0.05) was used to detect significant changes.RESULTS: Statistically significant improvements were observed at the three assessment periods for both groups in Motricity Index, Functional Ambulation Scale, 10-meter walking test, and 6-minute walking test. Sub-acute patients achieved statistically significant improvement in Trunk Control Test and Walking Handicap Scale at t0-t2. Sub-acute and chronic patient did not achieve significant improvement in Ashworth scale at t0-t2.CONCLUSIONS: Twelve sessions of over-ground gait training using a powered wearable robotic exoskeleton improved ambulatory functions in sub-acute and chronic post-stroke patients. Large, randomized multicenter studies are needed to confirm these preliminary data.CLINICAL REHABILITATION IMPACT: To plan a completely new individual tailored robotic rehabilitation strategy after stroke, including task-oriented over-ground gait training
    corecore