18,063 research outputs found
Self-modifiable color petri nets for modeling user manipulation and network event handling
A Self-Modifiable Color Petri Net (SMCPN) which has multimedia synchronization capability and the ability to model user manipulation and network event (i.e. network congestion, etc.) handling is proposed in this paper. In SMCPN, there are two types of tokens: resource tokens representing resources to be presented and color tokens with two sub-types: one associated with some commands to modify the net mechanism in operation, another associated with a number to decide iteration times. Also introduced is a new type of resource token named reverse token that moves to the opposite direction of arcs. When user manipulation/network event occurs, color tokens associated with the corresponding interrupt handling commands will be injected into places that contain resource tokens. These commands are then executed to handle the user manipulation/network event. SMCPN has the desired general programmability in the following sense: 1) It allows handling of user manipulations or pre-specified events at any time while keeping the Petri net design simple and easy. 2) It allows the user to customize event handling beforehand. This means the system being modeled can handle not only commonly seen user interrupts (e.g. skip, reverse, freeze), the user is free to define new operations including network event handling. 3) It has the power to simulate self-modifying protocols. A simulator has been built to demonstrate the feasibility of SMCPN
Recommended from our members
Modeling interactive memex-like applications based on self-modifiable petri nets
This paper introduces an interactive Memex-like application using a self-modifiable Petri Net model â Self-modifiable Color Petri Net (SCPN). The Memex (âmemory extenderâ) device proposed by Vannevar Bush in 1945 focused on the problems of âlocating relevant information in the published records and recording how that information is intellectually connected.â The important features of Memex include associative indexing and retrieval. In this paper, the self-modifiable functions of SCPN are used to achieve trail recording and retrieval. A place in SCPN represents a website and an arc indicates the trail direction. Each time when a new website is visited, a place corresponding to this website will be added. After a trail is built, users can use it to retrieve the websites they have visited. Besides, useful user interactions are supported by SCPN to achieve Memex functions. The types of user interactions include: forward, backward, history, search, etc. A simulator has been built to demonstrate that the SCPN model can realize Memex functions. Petri net instances can be designed to model trail record, back, and forward operations using this simulator. Furthermore, a client-server based application system has been built. Using this system, a user can surf online and record his surfing history on the server according to different topics and share them with other users
Recommended from our members
Incremental evolution strategy for function optimization
This paper presents a novel evolutionary approach for function optimization Incremental Evolution Strategy (IES). Two strategies are proposed. One is to evolve the input variables incrementally. The whole evolution consists of several phases and one more variable is focused in each phase. The number of phases is equal to the number of variables in maximum. Each phase is composed of two stages: in the single-variable evolution (SVE) stage, evolution is taken on one independent variable in a series of cutting planes; in the multi-variable evolving (MVE) stage, the initial population is formed by integrating the populations obtained by the SVE and the MVE in the last phase. And the evolution is taken on the incremented variable set. The other strategy is a hybrid of particle swarm optimization (PSO) and evolution strategy (ES). PSO is applied to adjust the cutting planes/hyper-planes (in SVEs/MVEs) while (1+1)-ES is applied to searching optima in the cutting planes/hyper-planes. The results of experiments show that the performance of IES is generally better than that of three other evolutionary algorithms, improved normal GA, PSO and SADE_CERAF, in the sense that IES finds solutions closer to the true optima and with more optimal objective values
Recommended from our members
Evolving dynamic multiple-objective optimization problems with objective replacement
This paper studies the strategies for multi-objective optimization in a dynamic environment. In particular, we focus on problems with objective replacement, where some objectives may be replaced with new objectives during evolution. It is shown that the Pareto-optimal sets before and after the objective replacement share some common members. Based on this observation, we suggest the inheritance strategy. When objective replacement occurs, this strategy selects good chromosomes according to the new objective set from the solutions found before objective replacement, and then continues to optimize them via evolution for the new objective set. The experiment results showed that this strategy can help MOGAs achieve better performance than MOGAs without using the inheritance strategy, where the evolution is restarted when objective replacement occurs. More solutions with better quality are found during the same time span
Fermionization and fractional statistics in the strongly interacting one-dimensional Bose gas
We discuss recent results on the relation between the strongly interacting
one-dimensional Bose gas and a gas of ideal particles obeying nonmutual
generalized exclusion statistics (GES). The thermodynamic properties considered
include the statistical profiles, the specific heat and local pair
correlations. In the strong coupling limit , the
Tonks-Girardeau gas, the equivalence is with Fermi statistics. The deviation
from Fermi statistics during boson fermionization for finite but large
interaction strength is described by the relation , where is a measure of the GES. This gives a quantitative
description of the fermionization process. In this sense the recent
experimental measurement of local pair correlations in a 1D Bose gas of
Rb atoms also provides a measure of the deviation of the GES parameter
away from the pure Fermi statistics value . Other
thermodynamic properties, such as the distribution profiles and the specific
heat, are also sensitive to the statistics. They also thus provide a way of
exploring fractional statistics in the strongly interacting 1D Bose gas.Comment: 7 pages, 4 figure
Dual-frequency ferromagnetic resonance
We describe a new experimental technique to investigate coupling effects
between different layers or modes in ferromagnetic resonance (FMR). Dual FMR
frequencies are excited (2-8 GHz) simultaneously and detected selectively in a
broadband RF circuit, using lock-in amplifier detection at separate modulation
frequencies.Comment: 4 pages, 4 figures, accepted by "Review of Scientific Instruments",
200
A Three-Pole Substrate Integrated Waveguide Bandpass Filter Using New Coupling Scheme
A novel three-pole substrate integrated waveguide (SIW) bandpass filter (BPF) using new coupling scheme is proposed in this paper. Two high order degenerate modes (TE102 and TE201) of a square SIW cavity and a dominant mode (TE101) of a rectangular SIW cavity are coupled to form a three-pole SIW BPF. The coupling scheme of the structure is given and analyzed. Due to the coupling between two cavities, as well as the coupling between source and load, three transmission zeros are created in the stopband of the filter. The proposed three-pole SIW BPF is designed and fabricated. Good agreement between simulated and measured results verifies the validity of the design methodology well
- âŠ