
 1

Modeling Interactive Memex-like Applications Based on
Self-Modifiable Petri Nets

Sheng-Uei Guan1 and Wei Liu

Department of Electrical and Computer Engineering
 National University of Singapore

10 Kent Ridge Crescent
 Singapore 119260

 Email: sg_1_1@yahoo.com\eleliuw@nus.edu.sg

1 Corresponding Author: TEL: 65-68745153; FAX: 65-67791103

Abstract This paper introduces an interactive Memex-like application using a self-modifiable Petri

Net model – Self-modifiable Color Petri Net (SCPN). The Memex (“memory extender”) device

proposed by Vannevar Bush in 1945 focused on the problems of “locating relevant information in the

published records and recording how that information is intellectually connected.” The important

features of Memex include associative indexing and retrieval. In this paper, the self-modifiable

functions of SCPN are used to achieve trail recording and retrieval. A place in SCPN represents a

website and an arc indicates the trail direction. Each time when a new website is visited, a place

corresponding to this website will be added. After a trail is built, users can use it to retrieve the websites

they have visited. Besides, useful user interactions are supported by SCPN to achieve Memex functions.

The types of user interactions include: forward, backward, history, search, etc. A simulator has been

built to demonstrate that the SCPN model can realize Memex functions. Petri net instances can be

designed to model trail record, back, and forward operations using this simulator. Furthermore, a client-

server based application system has been built. Using this system, a user can surf online and record his

surfing history on the server according to different topics and share them with other users.

Keywords Memex, Petri net, color token, trail, history retrieval

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1. Introduction

As early as 1945, Vannevar Bush proposed a desktop personal information machine called the

Memex (memory extender) [2]. Memex focused on the problems of “locating relevant information in the

published records and recording how that information is intellectually connected.” Memex later became

an influential idea and by the 1980s it was hailed as the inspiration for hypertext and new ways to

organize and retrieve information. Memex would archive, analyze, and index our browsing or retrieval

experience, covering books, movies, conversation, etc.

With the development of the Internet, more and more computers are network based. A great deal of

information is on-line. The sites related to your interest will often be visited by you. Maybe we will

hope that the browser can record our visit trails and help us quickly find sites visited recently. Although

bookmarks can be used to record frequented websites, browsers discard most history and trail

information. The explosion of information needs a more effective mechanism. Memex has been

considered in this domain. Assisted by Memex, a Web surfer can retrieve the URL trails that a user

visited several months ago. In this paper, we propose a mechanism Self-modifiable Color Petri Net -

SCPN to simulate the Memex functions in a Web browser. In this mechanism, an SCPN instance is used

to record a trail of a topic, a place in an SCPN instance represents a website. To record trails according

to different taxonomy, users are allowed to choose a website to be archived or a side-trail to be built.

The paper is organized as follows. Section 2 gives an introduction of the related work. Section 3

presents the definitions of SCPN. Section 4 gives solid examples on how SCPN is used to realize

Memex functions. Section 5 describes the implementation of an SCPN simulator. Section 6 introduces

the client-server based application system. Section 7 discusses some design issues, while Section 8

concludes this paper.

 3

2. Related Work

2.1 Petri Net Related

Petri Net

Petri net is a graphical notation for the formal description of systems whose dynamics are

characterized by concurrency, synchronization, mutual exclusion, and other conflict, which are typical

in distributed environment. A formal definition of Petri nets is a four-tuple (P, T, I, O)[1] where P is a

set of places that are the state variables of a system; T is a set of transitions, which are state changing

operators. I and O are the pre- and post-conditions of a transition. A simple example of a Petri net model

is shown in Figure 1. The dynamic performance of a Petri net is controlled by the firing rule. A

transition (e.g. t1 as shown in Figure 1) will fire if all its input places contain at least one token.

Figure 1. A Petri Net Example

Several extended Petri net models have been proposed to extend its application domains. In the

following, we describe some of these models.

Object Composition Petri Net (OCPN)

 The OCPN [9] model proposed by Little and Ghafoor is an enhanced version of Timed Petri nets. It

introduces the value of time as duration to the conventional Petri nets. OCPN can model temporal

relations between media data in multimedia presentation. As a drawback, this model cannot handle user

interrupt and distributed environment.

Enhanced Prioritized Petri Net (EP-net)

p1 p2 p3 t1 t2

 4

Proposed by S.U. Guan and S.S. Lim, Enhanced Prioritized Petri Net (EP-net) [4,8] is an enhanced

version of P-net [10]. EP-net uses a mechanism known as Premature/Late Arriving Token Handler to

handle late and/or premature tokens (locked tokens forced to unlock). Moreover, EP-net introduces

dynamic arcs associated with sets of program statements to handle user interactions, this improves the

flexibility of designing interactive systems. Yet when handling user interaction, this model needs to

replicate the Petri net being modeled every time an interaction (e.g. reverse) occurs, this makes the

model size large and difficult to analyze when the network size increases.

2.2 Web Surfing Correlation

Memex

 Proposed by Vannevar Bush, Memex [2] is a recording device that has some functions of a

computer, microfiche, database and an information retrieval system. The essential feature of Memex is

its capacity for retrieval and annotation. Another important feature of Memex is the function of

associative indexing that presents the feature of hyperlinks. In addition to these links, Bush also wanted

Memex to support the building of trails through the material in the form of a set of links that would

combine information of relevance for a specific topic. Using Memex to support Web surfing can be

more effective and powerful.

A Personal Web Map

 SeiJi Yamada and Norikatsu Nagino proposed a database named Personal Web Map (PWM) [7] and

developed the Anytime-Control algorithm to let users control their own web map construction of their

favorite websites. PWM divides web pages in layered sets and provides two different user modes. The

building mode allows a user to construct a PWM to record the URL information according to the

keyword that he is interested in. The utilizing mode lets the user browse the database to retrieve

 5

information. PWM can help users to gather relevant information in the WWW to a small database for

convenient retrieval. It is more like a powerful bookmark but it does not record users’ browsing trails.

Bookmark Organizer and PowerBookmarks

 Bookmark Organizer [5] is a useful client-side bookmark organization. It achieves automatic

classification by using clustering analysis to organize documents based on their conceptual similarity

and at the same time allows the user to select when and where to apply it. Although this approach is

useful for personal organization, it does not record user surfing context details, which are essential in

reconstructing trail history.

 PowerBookmarks [6] provides personalized organization and management of bookmarks by

combining database with Web technologies. PowerBookmarks provides the control functions to

navigation and bookmarking through a CGI form interface. It can achieve advanced query, classification

and navigation functions and classify bookmarks. Although PowerBookmarks can store specific

information for different users, it couldn’t record surfing trails like Memex.

Using Memex as a Browser Assistant

Soumen and Sandeep et al. presented a beginning work of Memex for the Web [3]. In their work,

Memex is used as a browser assistant. Data can be indexed not only by keywords but also according to

the user’s view of topics. This mechanism has a client-server architecture. The server side performs

various archiving and mining functions and the client side provides personal folders to record the trails

in different topics and allows the user to choose to archive and share trails.

 Related work so far all uses ad hoc approaches constructing Memex-like applications, in contrast,

our approach offers an underlying model with which a systematic approach to constructing Memex-like

applications can be adopted. Most browsers implement incomplete history trails by stacking URLs

visited, which means trails can be lost once popped off the stack. In contrast, our approach enables

 6

history & trail retrieval as many times as you wish as it is based on the Self-modifiable Color Petri net

model that also facilitates many types of user interactions. So the URLs recorded will not be lost unless

the user deletes them. Therefore it is more powerful.

CZWeb

 CZWeb [11] consists of a hierarchically organized network (or graph). A map-like visualization

tool is provided to represent the intricate interconnection among pages. Rectangle is used to represent

node in the network. There are two types of nodes are supported, page node and cluster node, which

represent a particular web page and a group of web pages separately. CZWeb supports non-metric

relationship through a hierarchical network representation of web pages. Although CZWeb provides a

useful interconnection among pages, no surfing history information is involved.

Memoir

 Memoir [12] is an open framework, it is extensible and adaptable to an organization’s infrastructure

and applications and provides its interface via standard Web browser. Trails are used to open

hypermedia link services and a set of software agents to assist users in accessing and navigating vast

amounts of information in Intranet environments. The trails in Memoir are mainly used to record actions

on documents that users have visited. In our Memex application, trails are mainly used to record and

retrieve surfing history information.

3. Self-modifiable Color Petri Net (SCPN)

In this section, we introduce the general concepts and definitions of Self-modifiable Color Petri

Nets (SCPN).

There are two types of tokens in SCPN: color tokens and resource tokens. And resource tokens are

divided into two sub-types: forward tokens that move in the same direction with arcs and reverse tokens

that move in the opposite direction with arcs.

 7

Definition 1: SCPN

SCPN is a seven-tuple S=(P, T, C, A, D, M, U), where P∩T=Ø.

P= {p1, p2, p3, … , pm} is a finite set of places, where m>0.

T= {t1, t2, t3, … , tn} is a finite set of transitions, where n>0.

C= {c1, c2, c3, … , ck} is a finite set of commands (as defined in table 1), where k>0 (e.g. c1= “create an

arc”, c2= “delete an arc”).

A: {PXT} U {TXP} is a finite set of arcs representing the flow relation.

D: P → R+ is a mapping from the sets of places to the set of non-negative real numbers, representing the

presentation duration of the resources concerned.

M: P → {Ir
+, Ic

+} (Ir─counts the number of resource tokens; Ic─counts the number of color tokens). Ic/r
+

={0, 1, 2,...}. M is a mapping from the set of places to the set of integer numbers, representing a

marking of a net.

U: is a finite set of colors, each color represents some types of user interaction, which may reconfigure

the Petri net being modeled. This is done by associating commands (Table 1) with each color token.

There are two approaches to represent commands using color tokens: one is to use one color token to represent

each different type of (user) interrupt, thus a color token represents a combination of several basic commands.

Another is to use one color token to represent one command, and the color of a token also indicates the priority of

the command represented (i.e. which command will be executed first). The former approach is closer to the

reality, we have adopted the former approach in this paper. Note that for the ease of presentation, no special

color coding is prescribed for each command, colors in this paper are just used to indicate that there are

different commands in the system. In practical use, a ‘color code’ is used to encode each color token

(and user interrupt), when a user interaction occurs, the corresponding ‘color code’ will be generated

and the program related with this code will be executed to finish the particular user interaction. In the

 8

figures that follow, we use different shapes to represent color tokens to make it easier to recognize when

printed in black and white.

The list of commands shown in Table 1 are sufficient for any types of change to a Petri net because

the basic modifications to Petri nets have been included in our list (the commands labeled with ∗).

Table 1 List of commands

Mechanism Command Action
Create arc∗ To create an arc

Arc Delete arc∗ To delete an arc
Create place∗ To create a place

Place Delete place∗ To delete a place
Enable transition A transition is able to fire when the conditions to fire are met
Disable transition A transition is not able to fire regardless whether the conditions

to fire the transition are fulfilled
Create transition∗ To create a transition

Transition

Delete transition∗ To delete a transition
Lock token To lock a token
Unlock token To unlock a token
Reverse Change the direction of the resource token
Create token∗ To create a token in the indicated place

Token

Delete token∗ To delete a token

 By using these commands, it is easy to change a Petri net model to fit with different user requests.

These changes are simple such as adding new places, transitions and arcs. To finish a user interaction,

generally we will not need to increase the model’s size much so as to increase adversely the time and

space complexities. In comparison, if we use the OCPN or EP-net to handle a reverse operation, the

‘forward’ part of the model needs to be replicated in the reverse direction to finish the operation, this

makes the model too large and complex. But using the SCPN model, we just need to insert the reverse

color token, and the resource token will then move in the reverse direction, no model structure needs to

be changed.

Definition 2: Firing rules of SCPN

 9

 The firing rules of Petri nets are: a transition is enabled when all its input places contain some

number of tokens greater than or equal to the number of each respective place’s arcs to transition. If the

condition is met, the transition can fire and if the transition fires, token(s) are moved from their input

places and created at each of its output places.

 By introducing some novel mechanisms, SCPN can handle user interactions flexibly. For the new

mechanisms to work, some new rules are defined to assist SCPN to complete its functions:

• A color token will be injected into each place that contains resource token(s) when a user

interaction occurs.

• When a color token is injected, the execution of the model will be interrupted.

• When all the commands associated with a color token have been executed, this color token will

be deleted. Then the playback of resource tokens will be resumed.

 The commands associated with each color token can be designed according to the corresponding

user interaction. In the following, we use some solid examples to demonstrate how color tokens are used

to realize Memex functions in Web surfing.

4. Designing Memex Functions using SCPN

 The characteristics of Petri net make it straightforward to record a trail. Given a fixed trail, Petri net

can describe a trail visually by using places to represent nodes along the trail while using transitions and

arcs to indicate the direction of trail. However, Petri net configuration once prescribed cannot be

changed during run-time which makes it difficult to record a dynamic trail. By adding the self-

reconfiguration function, SCPN can be used to record dynamic trails. So in this paper, we use SCPN to

design and simulate Memex functions in Web applications. It allows users to create trail records and

inquire about trail history.

 10

4.1. Simulating Memex Trail Recording in Web Browsing

To simulate Memex in Web browsing, we assume that a place in SCPN represents a website. Each

time when a website is opened, a color token including the following basic commands will be injected

into the place pstart that includes a resource token as shown in Figure 2: lock the resource token in pstart,

create a new place p1 (this place will represent the newly opened website), create a new transition t1,

create an arc from current place pstart to the new transition t1, create an arc from the new transition t1 to

the new place p1, unlock the resource token in pstart. Finally, the color token self-deletes, transition t1

fires, the resource token moves to p1 indicating that the website represented by this place is active now.

While SCPN is recording the surfing trail, the corresponding website address will be recorded along

with each place.

 a. Create a new place and transition b. Transition t1 fires

Figure 2. An Example - Using SCPN to Record the Surfing Trail

4.2. Main Trail and Side Trails

 Almost all websites contain some related hyperlinks. A trail can bifurcate: when a hyperlink of one

website is visited, a side-trail will be created to record it. As shown in Figure 3, the main trail that

represents the main surfing history is composed by places with m as the first subscript, the side-trail that

represents the hyperlink of a website is composed by places with names having s as the first subscript.

Figure 3. Trail Recording Using SCPN

pstart tm1
tm2 tm3

tS11

tS12

tS22 tS21

pm1 pm2 pm3

pS11 pS12

pS21 pS22

tS13 pS13

pstart p1 t1 pstart t1 p1

 11

 If the hyperlink is opened in a new window or the user wants to record the hyperlink of a website as

a new trail, a new starting place will be created as the first place in a new trail as shown in Figure 4. The

arcs linking from pm1 to pm’1 are represented by dot lines meaning that these arcs do not allow a reverse

token moving along them.

Figure 4. A New Trail is Created

4.3. Backward and Forward Operations

 Using SCPN to record a browser trail, it can simulate the backward and forward operations of Web

browsing. A resource token in a place indicates that the website corresponding to this place is active, the

arcs indicate the sequence of websites being visited. When a user issues a backward command, a color

token corresponding to this command will be injected into the place pm3 that includes a resource token

as shown in Figure 5a. Then the commands associated with this color token executes, the resource token

in pm4 is locked and changed to a reverse one as shown in Figure 5b. In Figure 5c, the reverse token is

unlocked and the color token self-deletes. Finally, transition tm3 fires, the reverse token moves from pm3

to pm2 and changes back to forward resource token as shown in Figure 5d, the information of the website

related to place pm2 will be retrieved. At the same time, pm3 is recorded as an exit point so that a future

forward move will allow pm3 to be revisited.

 a. A color token corresponding to the backward operation is injected into pm3.

pstart tm1
tm2 tm3

tS11

tS12

tS22 tS21

pm1 pm2 pm3

pS11 pS12

pS21 pS22

tS13 pS13

Pm4

pstart tm1
tm2 tm3

ttemp

tm’1

pm1 pm2 pm3

pm’1 pm’2 tm’2 pm’3

 12

b. The resource token is locked and changed to a reverse one.

c. Reverse token is unlocked and color token self-deletes.

d. Execution of the backward operation is completed.

Figure 5. Implementation of the Backward Operation

After checking the content of this website, if the user decides to go back to the previous website

again, a forward command can be issued. A color token (the red token in triangle form in Figure 6a just

indicates that this is a token associated with the forward command) associated with the forward

command will be injected into place pm2 that contains the resource token as shown in Figure 6a. Then

the command executes to direct the resource token to fire. At this moment, we can see that one of the

two transitions tm3 and ts21 can fire. In modeling Memex functions, SCPN is used to record the surfing

history, the resource token is used to indicate the active website. There can be only one place that can

pstart tm1
tm2 tm3

tS11
tS12

tS22 tS21

pm1 pm2 pm3

pS11 pS12

pS21 pS22

tS13 pS13

Pm4

pstart tm1
tm2 tm3

tS11
tS12

tS22 tS21

pm1 pm2 pm3

pS11 pS12

pS21 pS22

tS13 pS13

Pm4

pstart tm1
tm2 tm3

tS11

tS12

tS22 tS21

pm1 pm2 pm3

pS11 pS12

pS21 pS22

tS13 pS13

Pm4

pm3

 13

contain the resource token at a time. In such a forward operation, because the exit point of a previous

backward operation has been recorded, tm3 will fire and the resource token will move to pm3 as shown in

Figure 6b, at the same time, the record of the previous exit point will be replaced by pm2 for future use.

a. A color token associated with the forward operation is injected into pm2.

b. The forward operation executes.

Figure 6. Implementation of the Forward Operation

5. Simulator

Using Visual C++, a simulator has been built. This simulator can model Memex functions such as

trail recording and retrieval. In this simulator, we use places in SCPN to represent the websites visited.

An SCPN instance represents a trail. To make the simulation more realistic, we use the Microsoft Active

X® controller in our program to display a website visited at the same time when the SCPN place

corresponding to the website is created or a resource token is injected into the place. A user can click the

buttons as shown in Figure 7 to simulate the corresponding function.

pstart tm1
tm2 tm3

tS11

tS12

tS22 tS21

pm1 pm2 pm3

pS11 pS12

pS21 pS22

tS13 pS13

Pm4

pstart tm1
tm2 tm3

tS11

tS12

tS22 tS21

pm1 pm2 pm3

pS11 pS12

pS21 pS22

tS13 pS13

Pm4
pm3

 14

To make the simulator more powerful, a basic Petri net design tool is provided. A Petri net instance

can be designed simply by clicking and dragging the icons from the toolbar to the white area. The Petri

net instance created can be saved as a .mex file for future use. Also a RUN button as shown in the menu

in Figure 7 is provided to execute a Petri net instance. When the RUN button is clicked, the Petri net

instance will be executed. If the instance is active, the token will move according to the firing direction.

The Back, Forward and History buttons are used to simulate Memex functions in a Web Browser. The

Save button is used to save the trail. If some trails have been built, Search function can help a user to

find an item of interest in these trails. We give an example to show how this simulator works.

Figure 7. The User Interface of the Memex Simulator

Icons used to
draw a Petri net

Simulate a
Petri net

Backward
operation Forward

operation History
operation

Open
operation

Search the
existing trails

Save a
new trail

Design User’s
Operation

 15

Figure 8. A Place Created to Record the Website Being Opened

As shown in Figure 8, when a website is opened (assume this is a new trail to be built), an event

signal will be sent to the system indicating a new website is opened. With this event, a place will be

created to record it. And a resource token will be created in the place at the same time to indicate that

the website corresponding to this place is active. In order to let the user arrange trails according to his

need, the simulator provides trail recording options. Each time when a website is opened, a dialog box

will be popped up to ask the user if the website needs to be recorded as shown in Figure 9. If the user

chooses not to archive this website, the place being created to record this website will be deleted after

the website is closed. If the user puts down an existing trail name, the website will be added and

recorded as the last place in this existing trail. If the user puts down a new trail name, a dialog box will

be popped up to let the user choose how to record this website as shown in Figure 10. For example, if a

hyperlink is followed after three websites have been visited, the user chooses to record it as a side trail

 16

by clicking the Yes button (Figure 10). This website will then be recorded as a side trail as shown in

Figure 11.

Figure 9. Archiving Choice Dialog Box

Figure 10. Trail Creation Choice Dialog Box

As shown in Figure 12, there are five places in the SCPN instance shown. From this we know that

five websites have been visited. The active website is http://www.google.com associated with the fifth

place. SCPN can show how many websites have been visited and which one is active now, but no

detailed information of these websites is shown on the graph. If the user wants to see the details of the

websites visited, the History button in the menu can accomplish this task.

Using SCPN to record trails, each place is associated with a website. It is easy to display history

records. When the user issues a command ‘History’, this can be done by clicking on the History button,

a dialog box will be opened to show the detailed trail information as shown in Figure 12.

 17

Figure 11. A Website Recorded as a Side Trail

Figure 12. The History Information Displayed

With the trail shown, we can select any item to revisit. For example, if we want to visit the IEEE

Xplore website, just select it from the list and click the ok button. The corresponding website will be

retrieved and the resource token will move to pm4 as shown in Figure 13.

 18

In addition to trail recording and retrieval, the Memex simulator can also achieve the backward and

forward operations similar to those functions in web browsers. As shown in Figure 14, if the user wants

to visit the previous website before the IEEE Xplore website, he only needs to click the Back button.

The resource token will move to pm3 and at the same time the website associated with this place will be

opened.

Following the above example, if the user wants to visit the next website again, he only needs to

click the Forward icon, the resource token will move to pm4 and the corresponding website will be

reopened at the same time.

Figure 13. Website Represented by pm4 Retrieved

 19

Figure 14. The Backward Operation Executed

Besides these web-browser-like operations, the most important Memex function is that when some

trails have been built, a user can search for it according to name/topic/keyword. As shown in Figure 15,

when a user clicks the Search button, a dialog box will be popped up to show the existing trails. Then

the user can select from these trails the one that he is interested in to retrieve or input it in the search

Edit-box. For example, if the user wants to find some information about Memex, he/she only needs to

select the first item from the dialog box or input Memex into the search Edit-box and click the ok button.

The Memex trail details will then be displayed in a dialog box. Then the user proceeds to choose a

website he wants to visit from this trail. Assume that the first one is selected, the website will be opened

and at the same time the trail represented by SCPN is displayed as shown in Figure 16. The resource

token in pm1 indicates that the website associated with this place is active.

 20

Figure 15. Search for Existing Trails by Name

Figure 16. The First Website of the Memex Trail Retrieved

 By introducing color tokens and a basic command set, SCPN allows users to design their own

operations. Using Trail Record as an example, we show in the following how a user can design an

operation. If a user wants to design his own operation, he only needs to click the Design button, a dialog

 21

box will be popped up as shown in Figure 17. Basic commands have been listed in the left part of the

dialog box to help the user finish his design easily. To achieve Trail Record, a new place and a link from

the existing active place to this place will be created. The user then selects commands 2, 1, 4 and 3 to

achieve this operation. As shown in Figure 17, the user puts down the corresponding numbers of these

basic commands according to the execution sequence. He then clicks the ok button to finish the design

of Trail Record operation.

Figure 17. Using SCPN to Design an Operation

6. The Client-Server Based Application System

A Memex-like application system is built upon the architecture of client-server. Users can surf

online using the embedded web-browser, designate history topics and request to store relevant surfing

history on the server side. Additionally, the user can share the resources stored in the server with others,

and add or delete items under the topics with most interest. The application utilizes the TCP/IP protocol

within the Win32 (Windows 32-bit) environment to communicate with a multimedia resource server.

 22

Based on the Windows 2000 platform, the application is running under the National University of

Singapore's intranet.

6.1 Implementation of the Server

 A Memex server is used to store trails, users can store and view their surfing trails in the server.

Trails, which are meant to be shared by the other users, will be viewable by others. Before the server can

be used by a client, some initialization needs to take place. Initialization of the server refers to the steps

taken to establish connections with the client before data transfer. Figure 18 shows a Petri net for the

server initialization. The server starts off in the listening mode, which enables the server to constantly

listen for any attempts by a client connecting to the server. In the beginning, a locked token is in the

place of plisten. If a client requests a certain type of service from the server, the server will try to build up

a connection with this client. Once the connection is built, the token in plisten is unlocked and moves to

pconnect, in the meanwhile, an acknowledgement signal is sent to the client. As shown in Figure 18, a

token is created in pconnect when a connection is built. Then the server will wait for the client’s requests

and handle them.

Figure 18. SCPN for Server Initialization

Figure 19 is the screen shot of a Memex server. All available trails in the server are listed under the

“source list” with their topics as shown in Figure 19. The Send and Receive list boxes are used to show

the messages received and sent. If the address and topic for a website are received (e.g. the webpage

address of http://www.cs.brown.edu/memex/ and the topic of “Memex” are received), the server will

add this website address to the end of the trail named as Memex. If a new topic is received (such as

Plisten

tclient

pconnect

tCR

preceived psequence

thandle

phandling

tsequence

 23

Software), the server will open a new trail named as this topic and store the corresponding website

address under this trail.

Figure 19. The Screenshot of the Memex Server

6.2 Trails Recording, Organizing and Retrieving in the Memex Server

Trail management is the most important part in designing the Memex server, issues need to be

resolved such as how to store the trails and related information, and how to respond to and handle the

clients’ requests, etc. Selection of a proper database management system is crucial.

A users’ surfing history will be stored in the server as trails under specified topics. The user can

manage these trails by issuing corresponding commands to server. For example, if the user issues a trail

store request (this request includes three parts: a web address, a topic and the user’s information) to the

server, the server will check the userID and password firstly. After verification, the topic will be taken

out to see whether the same topic has already existed on the server. If it exists, the server will check the

user’s authorization to see whether he is allowed to change the trail. Although all users can access the

Memex server, not all users can modify the trails stored in the server. Different users have different

access rights to different trails. If the change is allowed, the server will extract the web-address and

 24

append it to the end of the trail. Otherwise, the server will return a message to the client to inform that

the topic exists and no change is allowed. If this is a new topic, the server will store the web-address

under this new topic.

 Any user can access shared trails on the server. However, only authorized users can change existing

trails in the server.

To retrieve a trail, a client needs to send a trail retrieve request with the topic name to the server.

The server will follow this request and search in its database for a match, then the matched list will be

sent back to the client.

Note that our SCPN does allow an automated implementation which means no user intervention is

required. The mechanism of accessing a certain user’s surfing history based on verifying the user ID and

password can be disabled if privacy is not a concern.

6.3 Implementation of the Memex Client

The Memex web-browser is a Microsoft Windows-based application and the screenshot is shown in

Figure 20. The application was developed mainly in C++ under the Microsoft Visual C++ environment.

The Microsoft Foundation Classes (MFC) were used extensively throughout the implementation as they

provided much of the functionality demanded.

An ActiveX object is embedded in this tool to achieve the browser function.

The browser can be used without a connection with the server. If a user wants to get information

from the server or store his own information in the server, a connection must be set up first. This can be

done by clicking the connect button (button 1 as shown in Figure 20). To use the Memex browser,

simply input the web-address in the URL edit box and click the refresh button (button 7 in Figure 20). If

the address is correct, it will be loaded. We elaborate how the Memex functions are realized in the

following section.

 25

6.4 Trail Recording and Sharing Using the Memex Server

Almost all web browsers provide some ‘favorite’ functions, users can save their favorite web-

addresses. Sometimes users may also want to share good websites with each other. With our Memex

browser, users can store their surfing history on the server and share them with other users. If a user

wants to store a web address, he only needs to click the favorite button (button 6 in Figure 20), a new

dialog box will be popped up for the user to input the needed information such as store topic. Upon

receiving such a request, the server searches the topic name in its database. If it exists and the user has

the authority to change it, the received web address will be appended to the trail with the same topic;

otherwise, an illegal operation message will be sent to the client. If it doesn’t exist, a new trail will be

generated to record this web-address for the user.

Figure 20. Screenshot the Memex Browser

1 2 3

4
5

6

7

Source List Box
Trail list box 8 9

Input Search Topic here

 26

At the same time, the user can decide if he wants to share this trail with other users. If the user has

chosen to share this trail, the choice will be sent to the server to be handled.

If the user is not authorized to change a named trail, the system allows the user to store the web

address as a side trail under the same topic. A dialog box as shown in Figure 21 will be popped up,

allowing the user to create a side trail.

Figure 21. Dialog Box for the User to Create a Side Trail

6.5 Trail Retrieving from the Server

 Search function is provided in the Memex server to help users to find their interested trails. To

achieve this function, trail topics on the server are stored in a database. When the search function is

requested, server will search in this database to look for the requested trail. A user can visit any shared

trail stored on the server. Relevant trails can be retrieved from the server. Those trails labeled with ‘*’

are shared.

With the trail list obtained from the server, the user can select a topic from the list to open .

Exemplified in Figure 22, the topic of “Memex” is selected and this trail is opened as shown in Figure

 27

22 by clicking the history button (button 5 in Figure 20). Web addresses belonging to this topic are

shown in the underlying “Trail list box”.

Figure 22. Trail Display in a Memex Client

 After a trail is retrieved, the user can visit it using the Memex browser. By simply clicking

“show website” (button 3 in Figure 20) button, the selected web address will be opened.

6.6 Trail Removing and Updating

 How to build and retrieve a trail using the Memex server-client system has been covered in the

earlier sections. Besides these mentioned features, this application also allows users to delete unwanted

trails or delete items from a trail. For example, if a user wants to delete a trail named as PetriNet, he

only needs to select this item from the trail list and click the “Del Trail” button (button 8 in Figure 20).

The ‘Del’ request will be sent to the Memex server, if the user has the right to do this, the trail named as

PetriNet will be deleted.

 28

 Items in a trail can also be deleted. For example a user decides to delete the second item from the

“Memex” trail, so he selects this item from the trail and click “Del Item” button (button 9 in Figure 20)

to send this request to the Memex server. When the server receives this request, it will check the user’s

right firstly. If the delete operation is allowed, the corresponding trail will be opened and the items to be

deleted will be extracted from the received packet. Then the items in this trail will be compared until the

matched item is found and deleted.

7. Discussions

 In the SCPN model, resource tokens are divided into two types: forward tokens and reverse tokens.

To distinguish between these two types, a property parameter is attached to each resource token. For a

reverse operation, when several segments need to be reversed, the color token will not move together

with the reverse token. However, a number n indicating the number of segments (places) to reverse will

be attached to the reverse token. Each time when a segment is displayed, n will be decremented by 1.

When n reaches zero, the reverse token will be changed to a forward one.

 When a reverse operation is requested for a trail including side trails, to avoid confusion, the user

will be prompted to specify whether only the current side-trail is to be reversed or the reverse operation

will include the main trail.

8. Conclusion

 In this paper, we have given an introduction to a Self-modifiable Color Petri net model - SCPN.

With the powerful reconfiguration function offered from this model, Memex functions can be achieved

in Web browsing. Our approach offers an underlying model with which a systematic approach to

constructing Memex-like applications can be adopted. A simulator with friendly user interface has been

 29

built to show how this can be achieved. This simulator can also be used as a Petri net design tool to help

users to design and implement their own Self-modifiable Color Petri net instances. A client-server based

system has also been built to realize the basic Memex functions.

Acknowledgement

The authors are grateful to the valuable comments from the editors and referees.

REFERENCES
[1] James L. Peterson, “Petri Net Theory and the Modeling of Systems”, Prentice-Hall, 1981

[2] Vannevar Bush, "As We May Think", Atlantic Monthly, 176, pp. 101-108, 1, July 1945. Online at
http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm

[3] Soumen Chakrabarti, Sandeep Srivastave et al., “Using Memex to Archive and Mine Community Web
Browsing Experience”, Computer Networks, Vol. 33. Iss. 1-6; pp. 669-684, Jun. 2000. Online at
http://www9.org/w9cdrom/98/98.html

[4] Sheng-Uei Guan and Sok-Seng Lim, "An Enhanced Prioritized Petri Net Model for Authoring Interactive
Multimedia Applications", Proceedings the Second International Conference on Information, Communications
& Signal Processing (ICICS'99), Singapore, pp. 7-10, Dec. 1999

[5] Y.S. Maarek and I.Z. Ben Shaul, “Automatically Organizing Bookmarks per Content”, in Proceedings Fifth
International World Wide Web Conference, Paris, May 1996

 http://www5conf.inria.fr/fich_html/papers/P37/Overview.html

[6] Wen-Syan Li, Quoc Vu, D. Agrawal, Y. Hara, and H. Takano, “PowerBookmarks: A System for
Personalizable Web Information Organization, Sharing and Management”, Computer Networks, 31, May 1999

[7] Seiji Yamada, Norikatsu Nagino, “Constructing a Personal Web Map with Anytime-Control of Web Robots”,
CoopIS’99 Proceedings, IFCIS International Conference on Cooperative Information Systems, pp. 140-147,
1999

[8] Sheng-Uei Guan and Sok-Seng Lim, “Modeling Multimedia with Enhanced Prioritized Petri Nets”, Computer
Communications, Vol. 25, Issue 8, pp. 812-824, May. 2002

[9] Thomas D. C. Little, A. Ghafoor, “Synchronization and Storage Models for Multimedia Objects”, IEEE
Journal on Selected Area in Communication Vol. 8, No. 3, pp. 413-427, Apr. 1990

[10] Sheng-Uei Guan, Hsiao-Yeh Yu, and Jen-Shun Yang, “A Prioritized Petri Net Model and Its Application in
Distributed Multimedia Systems”, IEEE Transactions on Computers, Vol. 47, No. 4, pp. 477-481, Apr. 1998

[11] Fisher B., G. Agelidis, J. Dill, P. Tan, G. Collaud and C. Jones. "CZWeb: Fish-Eye Views for Visualizing the
World-Wide Web", Proc. Seventh Int. Conf. on Human-Computer Interaction (HCI International '97), pp 719-
722, 1997

[12] D.Derource, W.Hall, S.Reich, et al. “Memoir: An Open Framework for Enhanced Navigation of Distributed
Information” in Information Processing & Management, V37, pp53-74, 2001

[13] Kurt Jensen, “Coloured Petri Nets”, Vol. 1, Springer-Verlag, 1997

[14] Yahya Y. Al-Salqan and Carl K. Chang, “Temporal Relations and Synchronization Agents”, IEEE
Multimedia, Vol. 3, pp. 30 - 39, 1996

[15] D.C.A Bulterman, “SMIL 2.0.2. Examples and Comparisons”, IEEE Multimedia, Vol. 9, Iss. 1, pp. 74 -84,
Jan-Mar 2002

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

