
Self-Modifiable Color Petri Nets for Modeling
User Manipulation and Network Event Handling

Sheng-Uei Guan and Wei Liu

Abstract—A Self-Modifiable Color Petri Net (SMCPN) which has multimedia synchronization capability and the ability to model user

manipulation and network event (i.e., network congestion, etc.) handling is proposed in this paper. In SMCPN, there are two types of

tokens: resource tokens representing resources to be presented and color tokens with two subtypes: one associated with some

commands to modify the net mechanism in operation, another associated with a number to decide iteration times. Also introduced is a

new type of resource token, named reverse token, that moves in the opposite direction of arcs. When user manipulation/network event

occurs, color tokens associated with the corresponding interrupt handling commands will be injected into places that contain resource

tokens. These commands are then executed to handle the user manipulation/network event. SMCPN has the desired general

programmability in the following sense: 1) It allows handling of user manipulations or prespecified events at any time while keeping the

Petri net design simple and easy. 2) It allows the user to customize event handling beforehand. This means the system being modeled

can handle not only commonly seen user interrupts (e.g., skip, reverse, freeze), the user is free to define new operations, including

network event handling. 3) It has the power to simulate self-modifying protocols. A simulator has been built to demonstrate the

feasibility of SMCPN.

Index Terms—Self-Modifiable Color Petri Nets (SMCPN), color tokens, multimedia synchronization, self-modifying protocols.

æ

1 INTRODUCTION

MULTIPLE streams of data from different sources may
become out-of-sync when the streams are being sent

and displayed across the network. This can be annoying or
even unacceptable for entertainment or commercial pur-
poses. So, synchronization is an important problem in
distributed systems.

Synchronization of a multimedia system can be divided
into two aspects: spatial composition and temporal composi-
tion. Spatial composition is needed in intermedia synchroni-
zation, which is to maintain the spatial relationship between
media, e.g., image and text. Temporal composition is needed
both in intermedia and intramedia composition, which is to
maintain the temporal relationship within the media.

User manipulation (or interrupt) requirements describe
what user input and output an application needs to
support. For example, a karaoke application is expected to
support a number of interrupts, such as speed scaling,
muting the sound of the singer, etc. It is an important factor
to evaluate a model to see if it can handle user interrupts.

Since Petri net was proposed, it has been used in
domains such as design and simulation of control systems,
communication protocols, and manufacturing processes
[15]. With many extended Petri net models proposed, the
application of Petri nets has been extended to multimedia
systems. The focus of the research flows from the
synchronization of multimedia without user interactions
to interactions in distributed environments [2], [3, [4], [5],
[6], [8], [9], [11], [12]. Some of the models are: Object

Composite Petri Net (OCPN) [14], Dynamic Timed Petri
Net (DTPN) [1], Prioritized Petri Net (P-Net) [11], and
Enhanced Prioritized Petri Net (EP-Net) [12].

An extended Petri net model—Self-Modifiable Color
Petri Net (SMCPN) is proposed in this paper. This model
can be used to handle user manipulations and network
events such as network congestion. None of the extended
Petri nets mentioned above have demonstrated control-
ability and programmability as SMCPN has offered. They
do not have the ability to reduce modeling size, improve
design flexibility, model playback on-the-fly, or simulate
real-time adaptive applications.

The paper is organized as follows: Section 2 gives an
overview on some major extended Petri nets used in
multimedia applications. Section 3 presents the definitions
of SMCPN with an example. Section 4 explains how to
achieve synchronous control of user interrupts/network
events based on SMCPN. Section 5 introduces an SMCPN
simulator. Section 6 concludes the paper and proposes
future work. The Appendix contains more examples of
SMCPN handling user interrupts.

2 RELATED WORK

2.1 Petri Nets

Petri net is a graphical tool for the formal description of
systems whose dynamics are characterized by concurrency,
synchronization, and mutual exclusion, which are typical
features of distributed environment. The formal definition
of Petri nets is a four-tuple (P, T, I, O) [7], where P is a set of
places corresponding to states, T is a set of transitions which
correspond to the rules of firing or nonfiring. I and O are the
input and output functions that can change the states. The
dynamic performance of a Petri net is controlled by the

920 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

. The authors are with Department of Electrical and Computer Engineering,
National University of Singapore, 10 Kent Ridge Crescent, Singapore
119260. E-mail: {eleguans, eleliuw}@nus.sed.sg.

Manuscript received 30 Jan. 2002; accepted 28 Mar. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 115795.

0018-9340/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

firing rule. A transition will fire if all its input places contain
at least one token.

Several extended Petri net models have been proposed to
extend its application domains. In this section, we describe
some of these models.

2.1.1 Colored Petri Net (CPN)

CPN [16] overcomes the weakness of Petri net in describing
complex systems. By introducing color sets, CPN can
achieve compact representation by equipping each token
with an attached data value, i.e., token color. CPN,
especially hierarchical CPN, has mainly been used in
modeling and analyzing large systems such as VLSI chip
design and electrical funds transfer [16]. CPN is not meant
for modeling the target applications of the SMCPN model.

2.1.2 Object Composition Petri Net (OCPN)

The OCPN [14] model proposed by Little and Ghafoor is an
enhanced version of Timed Petri nets. It introduces the
value of time as duration to the conventional Petri nets.
OCPN can model temporal relations between media data in
multimedia presentation. This is the most important
contribution of this model. This model cannot handle user
interrupt and distributed environment.

2.1.3 Dynamic Timed Petri Net (DTPN)

The DTPN [1] approach proposed by Prabhakaran and
Raghavan is an extension of OCPN that has the power to
deal with user interrupt. DTPN extends OCPN to model
typical user interrupts such as skip, reverse, freeze, restart,
and scale up/down the speed of a presentation. These are
achieved by allowing preempting of the Petri net execution
sequence and modification of the playback duration in the
places. When a place is preempted, the modification of its
execution duration will have four different types: tempor-
ary, deference, termination, and permanent. Although
DTPN can handle some user interrupts, it still cannot deal
with the premature/late arriving tokens. The definitions of
premature/late arriving tokens are given in the paper [11].

2.1.4 Prioritized Petri Net (P-Net) and Distributed Object

Composition Petri Net (DOCPN)

To overcome the limitation of the models introduced above,
Guan et al. have proposed DOCPN [11]. DOCPN inherits
the characteristics of Petri net and uses the OCPN
synchronous methods to synchronize among intermedia
objects. The main contributions of this model are: 1) It
extends OCPN to the distributed environment using a
global clock, and enables user interrupt control into OCPN.
2) A new mechanism, named prioritized Petri net (P-net), is
introduced, the arrival of a priority input event (e.g., user
interrupt) can fire a transition without waiting for other
nonpriority events. The main concern here is what happens
if a token arrives at a nonpriority input place after the
transition has been forced to fire by an earlier priority input
event. This motivates the design of EP-nets [12].

2.1.5 Enhanced Prioritized Petri Net (EP-Net)

Proposed by Guan and Lim, Enhanced Prioritized Petri Net
(EP-net) [12] is an upgraded version of P-net. EP-net uses a
mechanism known as Premature/Late Arriving Token

Handler (PLATH) to handle late and/or premature tokens
(locked tokens forced to unlock). Moreover, EP-net intro-
duces mechanisms such as PLATH and dynamic arcs that
can be associated with sets of program statements to handle
user interrupts; this improves the flexibility of designing
interactive systems. Although EP-net is more powerful than
P-net, it needs to duplicate a reversed Petri net every time a
reverse operation is called, which means that the model size
and effort will increase tremendously when the network
size increases. In order to overcome this weakness, SMCPN
comes to rescue.

2.1.6 Synchronized Multimedia Integration Language

(SMIL)

SMIL [23]—a W3C standard, allows integrating a set of
independent multimedia objects into a synchronized multi-
media presentation. Using SMIL, an author can: 1) describe
the temporal behavior of the presentation, 2) describe the
layout of the presentation on a screen, 3) associate
hyperlinks with media objects. The difference between
SMIL and SMCPN is that SMCPN can deal with the
indeterministic part of temporal schedule, i.e., temporal
schedule changeable and programmable due to (new types
of) user or network interrupts or manipulations at runtime,
while SMIL focus on the layout and prescription of
temporal schedule due to fixed types of user interrupts.
SMCPN allows runtime change of the temporal model itself
with the changes preprogrammed to handle any type of
user or network interrupts customizable by the user or
network manager.

3 SELF-MODIFIABLE COLOR PETRI NET

In this section, we introduce the general concepts and
definitions of Self-Modifiable Color Petri Nets (SMCPN).
SMCPN can model large-scale synchronization, supporting
user interrupts in distributed environments and handling
network events such as congestion.

3.1 Definitions

In SMCPN, the tokens are divided into two types: color
tokens and resource tokens. Furthermore, there are two
types of color tokens: one associated with commands to
accomplish control, another associated with a number that
indicates the number of iterations needed to play. There are
also two types of resource tokens used to play back
resources: a forward one that moves in the same direction
with arcs and a reverse one that moves in the opposite
direction with arcs. In Fig. 1, an example of SMCPN is
illustrated. The mechanisms drawn in dotted lines are
created after the control commands associated with the
color token c are executed. When the color token c appears

GUAN AND LIU: SELF-MODIFIABLE COLOR PETRI NETS FOR MODELING USER MANIPULATION AND NETWORK EVENT HANDLING 921

Fig. 1. SMCPN: An example. . Color token c: Modify the net structure by

adding a place p3 and two arcs t1 ¼ p3, p3 ÿ t2.

in the place p1, the commands associated with it will be
executed. In SMCPN, we have some primitive commands
that can modify the net structure such as to create a place,
disable a transition, etc. We can combine several of these
basic commands in a special sequence to handle different
user interrupts/network events.

There are two approaches to represent modification
commands: One is using one color token to represent one
type of (user) interrupt, thus a color token represents a
combination of several basic commands. Another is using
one color token to represent one basic command and the
color of a token also indicates the priority of a command (i.e.,
which command will be executed first). Because the former
approach is closer to reality, we use it in this paper. In the
example illustrated by Fig. 1, the color token c is associated
with five basic commands: disable transition t1, create a
presentation place p3, create an arc from transition t1 to place
p3, create an arc from place p3 to transition t2, enable transition
t1. The part drawn in dotted lines do not exist at the beginning,
then the color token c is injected into p1 due to some
interrupts/events. The implementation of the resource token
in place p1 will be paused, then the modification commands
associated with c is executed. The place and arcs drawn in
dotted lines are created successively. The mechanism of

SMCPN has been shown. In the following, we will

introduce the definitions of SMCPN.

Definition 1 (SMCPN). SMCPN is a seven-tuple

S ¼ fP;T;A;D;U;C;Mg, where P \ T 6¼ ;.

P ¼ fp1; p2; p3; . . . ; pmg is a finite set of places represent-

ing states in a multimedia system or processes in network

transmission, where m > 0.
T ¼ ft1; t2; t3; . . . ; tng is a finite set of transitions repre-

senting synchronization points in a multimedia system/

network transmission process, where n > 0.
A : fPXTg [fTXPg is a finite set of arcs representing the

flow relation.
D : P! Rþ is a mapping from the sets of presentation

places to the nonnegative real numbers, representing the

presentation duration of the resources concerned/transmis-

sion speed of network.
U ¼ fu1; u2; u3; . . . ; ulg is a finite set of colors; each color

could represent one type of user interrupt/network event,

where l > 0. C ¼ fc1; c2; c3; . . . ; ckg is a finite set of com-

mands (as defined in Table 1), where k > 0. (e.g., c1 ¼ “add

a place,” c2 ¼ “delete a place”). By using these basic

922 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

TABLE 1
List of Commands

commands, a user can map each type of user/network
operation into a color token.

M : P! fIþr ; Iþc g (Ir—counts the number of resource
tokens; Ic—counts the number of color tokens). Iþc=r ¼
f0; 1; 2; . . .g is a mapping from the set of places to the set
of integer numbers, representing a marking of a net.

The list of commands shown in Table 1 is sufficient for
any type of change to a Petri net because the basic
modifications to Petri nets have been included in our list
(the commands labeled with *).

In SMCPN, when a color token is injected into a place,
the commands associated with it will be triggered. Different
color tokens can be associated with different user inter-
rupts/network events. The main job of a designer is to
install the basic commands set and design SMCPN based on
special requirements from different user interrupts/net-
work events. A more flexible way is to let a user design an
SMCPN itself using these basic commands sets. This makes
the usage of SMCPN more elastic. We illustrate this by
some solid examples in Section 6.

3.2 Enabling and Firing Rules of SMCPN

A transition in a Petri net is enabled if all its input places are
comprised of a certain number of tokens greater than or
equal to the number of each respective place’s arcs to the
transition and no interrupt disables it. If the conditions
mentioned are met, the transition fires and token(s) are
removed from each of its input places and token(s) are
created at each of its output places. The transition fires
instantly if each of its input places is not associated with any
duration or contains any unlocked token. In the case when a
place is associated with duration, the place remains in the
active state for an interval specified by the duration D after
receiving a token. During this period, the token is locked.
Upon the cessation of the duration D, the token becomes
unlocked. For SMCPN, if no user disables a transition, it
will obey this enabling rule of Petri net.

By introducing the novel mechanisms, color token and
the primitive control commands, SMCPN supports inter-
active/distributed multimedia applications and can manip-
ulate the flow of the Petri net modeled. Besides supporting
the conventional rules of Petri nets, some new SMCPN rules
are needed.

Enabling Rules:

1. Create color tokens for control: When a user
interrupt/network event occurs, the color tokens
corresponding to this interrupt will be created and
injected into the places that contain resource tokens.
The commands associated with each color token will
be executed in order.

2. Once a color token is injected into a place, the
execution of the resource token(s) in this place will
be paused. At the same time, the system will not be
able to take further interrupts.

3. When a color token is created, the commands
associated with it will be executed. The network
structure will be modified to satisfy the demands of
the corresponding interrupt.

Firing Rule: When all commands associated with a color
token have been executed, this color token will be deleted.

At the same time, the normal resources tokens will be
resumed. In particular, the color token associated with an
index N will be deleted when the index number has been
decremented to zero. Then, the enabled transition will fire
according to the basic Petri net firing rules.

Finishing: When a color token finishes its operation, all
the modifications made for the user interrupt/network
event will be removed by default, i.e., the net structure will
be restored to the configuration before the user interrupt/
network event occurs. Thus, the modifications from an
interrupt will not affect the next presentation. If the user
chooses to preserve the modification, then the changed net
structure will stay.

With the introduction of these new mechanisms, SMCPN
will not possess the safeness and conservation property.
Although these properties are sacrificed, SMCPN has
gained more expressive power in the aspect of general
programmability and scalability when handling user or
network events. For example, SMCPN has functions to let a
user design his own operations. Comparing with the
sacrifice in verifiability, benefits from the new mechanisms
justify the cost paid.

3.3 Expressive Power of SMCPN

Agerwala [13] and others have shown that an extended
Petri Net model with the ability to test a place for zero token
can simulate a Turing machine. In the following, we prove
that SMCPN has the same expressive power as Turing
Machine, i.e., it has the ability to test a place for zero token.

Theorem. SMCPN has the power to model a Turing Machine.

Consider p3 representing a place to be tested, p1

representing a place to start the zeroing test, p4 representing
p3 has no token, and p2 representing p3 has a token as
shown in Fig. 2.

Now, let’s see how Fig. 2 can simulate the zero-token test;
the initial marking is shown in Fig. 2. At the beginning,
transitions t1 and t2 are disabled. When a token arrives at
placep1, the resource token inp1 is paused and the zeroing test
starts off. The control commands of color token c will be
executed according to the given order. Here, we must pay
attention to the execution sequence, transition t1 must be
enabled before transition t2 and, otherwise, it will produce
error results. Assume p3 contains no token, first commands 1
and 2 are executed, transition t1 is enabled, and the resource

GUAN AND LIU: SELF-MODIFIABLE COLOR PETRI NETS FOR MODELING USER MANIPULATION AND NETWORK EVENT HANDLING 923

Fig. 2. Simulated zero-token test by SMCPN.

token in p1 is unlocked because there is no token in place p3, so
t1 couldn’t fire, no token will be created in place p2. Then,
command 3 is executed, transition t2 is enabled. Because the
input place of transition t2 contains a resource token, t2 will
fire, and the resource token in place p1 will move to place p4.
At last, command 4 is executed, transitions t1 and t2 are
disabled. As a result, there is no token in place p2 and there is a
token in place p4, indicating that p3 contains no token. Repeat
the whole presentation again, but this time p3 contains a
token. When transition t1 is enabled, for all of its input places
that contain tokens, t1 will fire and the tokens in places p1 and
p3 will be removed and a token will appear in place p2. After
this command is finished, t2 will be enabled, but now there is
no token in place p1 and t2 will not fire. So, no token will
appear in place p4. Thus, we have proven that SMCPN can
model the Turing Machines. In order to preserve the token in
place p3, we set an arc from t1 to p3.

4 MODELING ITERATIVE MULTIMEDIA, USER

INTERRUPTS, AND NETWORK EVENTS

A color token has the authority to manipulate existing
mechanisms or generate new mechanisms. This makes
SMCPN powerful in handling user interrupts and network
events. Whenever a user interrupt/network event occurs,
color tokens will be created and injected into places that
contain resource token(s). The commands associated with
each color token will be executed and the interrupt is
implemented. Using the traditional Petri nets to model a
multimedia system, every segment needs to be represented
in the model. The model will be huge if there are many
segments to be executed. Hence, in SMCPN, a color token
with iteration index is introduced to tackle this problem.
Besides these, the embedded self-modification function
makes SMCPN so powerful that it can be used in modeling
self-modifying protocols. In the following, we give some
examples to show how SMCPN handles iterative multi-
media, user interrupts/network events such as reverse,
network congestion, and how to use SMCPN to design self-
modifying protocols. For the remaining user interrupts like
skip, please refer to the Appendix.

4.1 Modeling Streaming Multimedia Iteration

Consider a media presentation system of an indeterminate
number N of similar media resources. Using iteration,
presentation of this system is easy to handle. This system is
modeled as shown in Fig. 3a.

Upon starting as shown in Fig. 3b, a color token that has
been initialized with a value N will be injected into the
place pdec. When N > 0, arc oce will be disabled and occ will be
enabled. During the next transition, as shown in Fig. 3c, the
places for audio and video will play the first segment of
each resource. In Fig. 3d, a resource token is now in pdec.
When a resource token arrives in this place, the value of N
will be decremented by one. Assuming that N is greater
than 0, occ remains enabled and oce remains disabled. Thus, a
resource token will go back to pstart in the next instantiation.
In Fig. 3e, it is easy to see that pstart allows the presentation
to continue. The places pdv and pda will play the next video
and audio media segments nþ 1. The presentation goes on
until N goes down to 0. In this case, arc oce will be enabled

and occ will be disabled, thus ending the presentation shown
in Fig. 3f. At the same time, the color token will self-delete.

4.2 Reverse Operation

The reverse operation is similar to the forward operation,
only the flowing direction of tokens is opposite. In SMCPN,
the proposal of reverse tokens makes it is easy to handle
“reverse” interrupt. Sometimes, the “reverse” operation can
also be combined with the “speed scaling” operation to
form a “fast reverse” operation.

The handling of “reverse” interrupt using SMCPN is
illustrated in Fig. 4.

The implementation of “reverse” can be demonstrated
by the above figures. In Fig. 4a, the pointer at p5 represents
where a “reverse” user interrupt occurs. When a user
interrupt occurs, a color token (the triangle type token)
corresponding to the reverse operation will be created and
injected into the place p5 where there is a token in it, as
shown in Fig. 4b. The presentation of token a in p5 will be
paused at the same time when the color token appears in p5.
In Fig. 4c, the commands associated with the color token
will be executed, the forward token a in p5 is changed into a
reverse token. In Fig. 4d, the color token is deleted and the
net is resumed, the token is moved to the opposite direction
of the arcs from p5 to p4. In Fig. 4e, the implementation of
reverse operation is finished, the resource token a arrives at
place p1. At last, the reverse token is removed and the
forward token is restored, as shown in Fig. 4f.

A “reverse” interrupt applied to an iterated presentation
also can be handled by a color token tagged with a number,
as shown in Fig. 4g. When a “reverse” interrupt occurs, a
color token (the solid token) associated with a number N
(which represents the number of segments to be reversed)
will be injected into pdec. When the color token is injected
into the place, the resource token will be changed to a
reverse one and moved to the opposite direction of the arcs
with the color token(s). The number N associated with the
color token(s) will be decreased by one each time the
reverse token comes into place pdec. If N is greater than zero,
reverse will be continued. When N counts down to zero, the
reverse operation will end. The reversed resource token will
be changed to a forward token again and the color token
will be deleted.

4.3 Handling Network Congestion

Interactive multimedia communicaton basically means two-
way processing of multimedia data between the users and a
variety of sources and destinations. Sometimes network
congestion arises when too much data are transmitted at the
same time.

Here, we use SMCPN to model multimedia data
transmission in networks. When network congestion
occurs, there are options to handle this event under
SMCPN. Users are allowed to choose an appropriate
handling method according to the importance of data
before transmission starts. If the data is important—no
packet should be lost, users can choose to scale down the
transmission speed, as shown in Fig. 5. When SMCPN is
used in modeling data transmission, the duration associated
with a place will represent the transmission speed. As
shown in Fig. 5a, when network congestion occurs at p3&p4,

924 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

two color tokens associated with the change duration

command will be injected into p3&p4. Then, the com-

mands will be executed, the durations of places p3&p4 are

changed, as shown in Fig. 5b. As the congestion condition

could be worse than expected, the system will do a better

job by exploring the speed by decreasing it successively

until the congestion is relieved. When a suitable speed is

found, the congestion color token will self-delete and data

transmission will continue with the new transmission

speed, as shown in Fig. 5c.
Alternatively, when data is not so important such as

video segments—losing some packets will not affect the

quality seriously, users can choose to discard some packets

to relieve congestion. Before data transmission, users can set

the handling method to packet removal. Thus, when

network congestion occurs, some packets will be lost to

relieve traffic jam, as shown in Fig. 6. And, the duration

associated with such places can be adjusted to specify the

duration for packet removal.

4.4 Self-Modify Protocol Design Using SMCPN

In the following, we show how SMCPN can be used to

model self-modifying protocol execution. First, we give a

self-modifying protocol example. And then, we show the

SMCPN to model it. Self-Modifying Protocol (SMP) is a set

of instructions, rules, or conventions that can be changed by

the systems that communicate with the help of that

protocol.

GUAN AND LIU: SELF-MODIFIABLE COLOR PETRI NETS FOR MODELING USER MANIPULATION AND NETWORK EVENT HANDLING 925

Fig. 3. Presentation of streaming media in SMCPN. (a) SMCPN model of streaming media presentation. (b) Zeroth instantiation—streaming media

presentation. (c) First instantiation—streaming media presentation. (d) Second instantiation—streaming media presentation. (e) Third

instantiation—streaming media presentation. (f) Final instantiation—streaming media presentation.

4.4.1 Self-Modifying Alternating Bit Protocol

The original Alternating Bit Protocol (ABP) can be defined

as follows:

. The sender sends its data messages, one by one, to
the receiver, but, after sending each data message, it
must wait for an acknowledgment before sending
the next data message.

. Whenever the receiver receives a data message, it
should be able to detect whether it has received an
identical copy of this message earlier. For this
reason, the value of some bit in the sender is
attached to each data message sent. So long as a
data message is being resent, the value of this bit
remains fixed, but, whenever a new data message is
about to be sent, the value of this bit is altered (hence
the name “alternating bit”).

ABP is designed for communication without error, which
is the common scenario during data transmission. Occasion-
ally, network congestion or error can occur and then ABP is
not sufficient. SMP (e.g., Self-Modifying ABP) has been
proposed in [17] so that it is lightweight during normal
communication; however, it is capable of self-modification to
deal with exceptions when network events arise.

An SMP example has been presented in [17], as shown in
Fig. 7. When the sender does not receive any acknowl-
edgment for some time or the receiver receives a corrupted
message (Err), some new transitions will be added to the
sender and some new states (N1;N2) and transitions will be
added to the receiver. Self-modification is introduced upon
serious network events. The protocol change created is
meant to deal with the event raised.

Using SMCPN to model ABP self-modification, an
incoming event (e.g., message received, message error, or
loss) will trigger an interrupt upon which a corresponding
color token is created based on the type of events occurred
or messages received. The color token created will then be
injected into the place where it has a normal token.
Different events/messages received will lead to different
implementation, as shown in Fig. 8. We give a detailed
description in the following.

926 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 4. Handling a reverse interrupt in SMCPN. (a) A “reverse” interrupt
occurs. (b) A color token is created and injected into p5. (c) The
command being executed. (d) The modified net is implementing
“reverse.” (e) The implementation finished. (f) The network restored.
(g) Multimedia presentation with a reverse user interrupt in SMCPN.

Fig. 5. Changing transmission speed to handle network congestion. (a)

Network congestion occurs at p3&p4. (b) p3&p4 with new transmission

speeds. (c) The congestion color token self-deletes and transmission

continues.

1. Receiver’s responses in place p1: As shown in Fig. 8b,
if the receiver (in place p1) receives message A0, that
means a message is received, a color token used to
handle such a situation will be injected into p1 and
transition t1 will be enabled. Then, B0 is sent to the
sender and t1 fires—while the resource token moves
from p1 to p2, the next stage begins. Otherwise, if a
Nak or Err signal is detected/received, then the
receiver is alerted that there is some problem with
communication. A color token used to handle this
condition will be injected into p1, the commands
associated with this color token will be executed, a

transition, a place, and four arcs will be created
represented by the dot lines, as shown in Fig. 8b.
Then, transition t3 fires, the resource token moves to
p3, and Nak/Err is sent to the sender. At last, the
resource moves back to p1—waiting for the message
to be resent from the sender.

2. Sender’s responses in place p1: As shown in Fig. 8a,
after the sender (place p1) sent a message A0 to the
receiver, if a timeout, Err, Nak, or B1 signal is
detected/received, then the sender is alerted that
transmission has not been successful. Then, a color
token used to handle this condition will be injected
into p1, the commands associated with this color
token will be executed, a transition t3 and two arcs,
p1t3 and t3p1, are created represented by the dotted
lines shown in Fig. 8a. At last, transition t3 fires, a
resource token is reinjected into place p1, the current
message A0 will be sent again. If B0 is received, a
color token corresponding to this will be injected
into p1 and transition t1 will be enabled. At last,
transition t1 fires—while the resource token moves
from p1 to p2, the next message A1 is sent.

5 SMCPN SIMULATOR

The simulator implemented has two major functions: a

presentation specification module and a simulation module.

The presentation specification module includes icons of

places, arcs, and transitions for programmers to specify

temporal relationships among media in presentation. This

part is similar to a general Petri net design tool. A more

important function is that SMCPN provides the design

functions that let users design their own operations. The

simulation module offers common user interrupts such as

reverse, skip, and iteration.
The SMCPN simulator is designed using visual C++ with

a user-friendly interface. A user can do most of the job by

using the mouse. To draw a place or transition, a user just

clicks on the place or transition icons shown on the menu,

GUAN AND LIU: SELF-MODIFIABLE COLOR PETRI NETS FOR MODELING USER MANIPULATION AND NETWORK EVENT HANDLING 927

Fig. 6. Discarding packets to handle network congestion. (a) Network

congestion occurs, color tokens are injected. (b) Some packets are

dropped to reduce traffic. (c) Data transmission is continued after

congestion is resolved.

Fig. 7. Extension of the Alternating Bit Protocol.

as displayed in Fig. 9. A dialogue box will pop up,

prompting the user to enter a label. Then, by clicking onto

any area within the white screen, a place or transition will

be drawn. Also, the places and transitions can be connected

together with arcs by clicking the corresponding icon also

shown on the menu. After being given an initial marking,

the simulator is ready to run. When “Run” is clicked, the

simulator will run and fire till no transition is possible.
To simulate user interrupts/network events, we have

designed some icons corresponding to different operations

(as shown on the menu in Fig. 9). We use a reverse

operation as an example to introduce how user interrupt is

simulated on our SMCPN simulator. Fig. 9a shows that the

last section of a multimedia application model is being

presented (the model designed by the user using the

SMCPN simulator). At this time, the user wants to reverse

it. The only thing he needs to do is to click the “Re”

command that simulates the reverse user interrupt. When

clicked, a red token corresponding to reverse interrupt will

be injected into the place p5, as shown in Fig. 9b. At the

same time, the implementation of the resource token in p5 is

paused.The command associated with the red token will be

928 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 8. Using SMCPN to design self-modifying ABP. (a) Sender: all transitions are disabled in the beginning. (b) Receiver: all transitions are disabled

in the beginning.

executed, which changes the resource token in p5 from a

forward token to a reverse token. Then, the red token will

be deleted. Fig. 9c shows the implementation of this reverse

operation is being executed, the resource token moves to the

opposite direction of arcs. At last, when the reverse token

arrives at p1 and the implementation finishes, the forward

GUAN AND LIU: SELF-MODIFIABLE COLOR PETRI NETS FOR MODELING USER MANIPULATION AND NETWORK EVENT HANDLING 929

Fig. 9. SMCPN simulator. (a) A token has arrived at the last section. (b) The simulator responds to a reverse interrupt. (c) “Reverse” operation is

being executed. (d) The reverse user interrupt finished.

resource token will be restored, as shown in Fig. 9d, the
simulation of reverse user interrupt finishes.

We have simulated several user interrupts/network
events (e.g., reverse, skip, freeze, resume, and network
congestion) in our current prototype and the implementa-
tion results confirm the feasibility and general program-
mability of SMCPN.

Besides these predesigned operations, with the UI icon
the SMCNP simulator allows users to design their own
operations according to their special requirements. Net-
work congestion is used here as an example to show how a
user could design his own operation. When a user clicks on
the UI icon, a dialogue box will pop up, as shown in Fig. 10.
The user can input the name of his operation in the user
Operation/Network Event Name edit box. The number of
basic commands to be executed in this operation will be
input into the Number of Commands edit box. How many
times this operation needs to be executed can be specified in
the ExecutionTimes edit box. Click the ok icon after all these
parameters have been input. Another dialogue box for the
user to specify the sequence of commands will pop up, as
shown in Fig. 11. With the number of commands specified
as 1 just now, this dialogue box will appear once to let the
user input the command label (the commands set as shown
in Table 1) according to the execution sequence (if the
number is greater than one) that the user has designed. In
this particular example, the user specifies a congestion
handler by “change duration”—which means “adjust
transmission speed” to relieve congestion. Each time the
user inputs a command label and clicks the ok button, the
dialogue box will display the command sequence, as shown
in Fig. 11. When all the command labels have been input
and the ok icon is clicked, the specification is completed.

6 CONCLUSIONS

In this paper, we have proposed Self-Modifiable Color Petri
Nets—SMCPN as a powerful tool in handling user
interrupts and network events in distributed multimedia
systems. By introducing color tokens associated with
commands, SMCPN can modify the mechanisms of Petri
nets to accomplish real-time user/network operations.
SMCPN has the desired general controllability and pro-
grammability in the following sense: 1) It allows handling of
user manipulations or prespecified events at any time while

keeping the Petri net design simple and easy. For existing

models to realize the same functions, the design outcome

could be messy and the effort is tremendous. 2) It allows the

user to customize event handling beforehand. This means

the system being modeled can handle not only commonly

seen user interrupts (e.g., skip, reverse, freeze), the user is

also free to define new operations, including network event

handling. 3) It has the power to simulate self-modifying

protocols.
SMCPN facilitates a compact and flexible specification of

real-time, large-scale synchronization while preserving

granularity. By trading verifiability with expressiveness,

SMCPN has the desired general programmability when

handling user or network interrupts. There is no need for

the designers to prespecify individual Petri nets for each

place that may be subject to such interrupts. A simulator

has been built to demonstrate the feasibility of SMCPN.

APPENDIX

SKIP OPERATION

Sometimes a user might feel that a certain section of a
presentation is boring and want to skip to other sections.
The user can choose to skip an on-going stage or skip to a
stage that is specified by the user. Assume a multimedia
presentation is displaying MTV when a user wants to skip
from the current stage to another (p5 in Fig. 12a) as shown in
Fig. 12a. As shown in Fig. 12b, when such a user interrupt
occurs, the color tokens corresponding to “skip” will be
created in the places which contain resource tokens at the
same time that the resource tokens in these places are
paused. First, command 1 associated with color token c is
executed, transition t2 will be disabled. Second, command 2
will create transition t5. Third, command 3 creates the arcs
from p2=p3 to transition t5. At last, command 4 creates an arc
from transition t5 to place p5. Now, the modification of the
net is done. The resource tokens in p2 and p3 will be
resumed and moved through transition t5 to place p5, as
shown in Fig. 12c. At last, the added parts will be deleted,

930 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 10. Dialogue box—user operation design.

Fig. 11. Dialogue box for a user to customize his own operations.

the net structure will be restored to the initial state, as
shown in Fig. 12d.

Please note that the commands specified in Fig. 12 are
generic so that the same specifications apply regardless of
where in the net an interrupt might arise. This general
programmability is one of the strengths of SMCPN. The
same applies to the handling of other user interrupts. Our
implementation has confirmed the feasibility of this.

Also the skip operation, when applied to an iterated
presentation, can be handled by a color token tagged with a
number Nskip, as shown in Fig. 13.

The invocation of a skip user interrupt creates the color
token associated with the skip operation into the place pUI .
It sets the value of Nskip to the media segment number to
skip to, specified by the user. When the color token for skip
is injected into pUI , the current resource segment index will
be replaced by Nskip. Then, the system will continue its
operation from the segment Nskip.

REFERENCES

[1] B. Prabhakaran and S.V. Raghavan, “Synchronization Models for
Multimedia Presentation with User Participation,” ACM Multi-
media Proc., pp. 157-166, Aug. 1993.

[2] C.-M. Huang and C.-M. Lo, “An EFSM-Based Multimedia
Synchronization Model and the Authoring System,” IEEE J.
Selected Areas in Comm., no. 1, pp. 138-152, Jan. 1996.

[3] C.-M. Huang and C.-M. Lo, “Synchronization for Interactive

Multimedia Presentations,” IEEE Multimedia, vol. 5, no. 4, pp. 44-

62, Oct.-Dec. 1998.

GUAN AND LIU: SELF-MODIFIABLE COLOR PETRI NETS FOR MODELING USER MANIPULATION AND NETWORK EVENT HANDLING 931

Fig. 12. A skip operation. (a) Skip operation from the current place to p5. (b) The modification of the model. (c) Skip interrupt in execution. (d) The net

structure restored.

Fig. 13. Multimedia presentation with a skip user interrupt. (a) A color

token associated with Nskip is injected into pUI. (b) The index color token

is replaced with a color token Nskip.

[4] C. Nicolaou, “An Architecture for Real-Time Multimedia Com-
munication System,” IEEE J. Selected Areas in Comm., vol. 8, no. 3,
pp. 391-400, Apr. 1990.

[5] F. Bastian and P. Lenders, “Media Synchronization on Distributed
Multimedia Systems,” Proc. Int’l Conf. Multimedia Computing and
Systems, pp. 526-531, 1994.

[6] G. Blakowski and R. Steinmetz, “A Media Synchronization
Survey: Reference Model, Specification, and Case Studies,” IEEE
J. Selected Areas in Comm., vol. 14, no. 1, pp. 5-35, Jan. 1996.

[7] J.L. Peterson, Petri Net Theory and The Modeling of Systems. Prentice
Hall, 1981.

[8] M. Diaz and P. Senac, “Time Stream Petri Nets A Model for
Multimedia Streams Synchronization,” Proc. First Int’l Conf.
Multimedia Modeling, pp. 257-273, 1993.

[9] N.U. Qazi, M. Woo, and A. Ghafoor, “A Synchronization and
Communication Model for Distributed Multimedia Objects,” Proc.
First ACM Int’l Conf. Multimedia, pp. 147-155, Aug. 1993.

[10] P.K. Andleigh and T. Kiran, Multimedia Systems Design, pp. 421-
444. Prentice Hall, 1996.

[11] S.-U. Guan, H.-Y. Yu, and J.-S. Yang, “A Prioritized Petri Net
Model and Its Application in Distributed Multimedia System,”
IEEE Trans. Computers, vol. 47, no. 4, pp. 477-481, Apr. 1998.

[12] S.-U. Guan and S.-S. Lim, “Modeling Multimedia with Enhanced
Prioritized Petri Nets,” Computer Comm., to appear.

[13] T. Agerwala, “A Complete Model for Representing the Coordina-
tion for Asychronous Processes,” Hopkins Computer Research
Report Number 32, Computer Science Program, Johns Hopkins
Univ. Baltimore, Md., July 1974.

[14] T.D.C. Little and A. Ghafoor, “Synchronization and Storage
Models for Multimedia Objects,” IEEE J. Selected Areas in Comm.,
vol. 8, no. 3, pp. 413-427, Apr. 1990.

[15] W. Reisig, A Primer in Petri Net Design. Springer-Verlag, 1992.
[16] K. Jensen, Coloured Petri Nets, vol. 1. Springer-Verlag, 1997.
[17] S.-U. Guan and Z. Jiang, “A New Approach to Implement Self-

Modifying Protocols,” Proc. 2000 IEEE Int’l Symp. Intelligent Signal
Processing and Comm. Systems (ISPACS 2000), pp. 539-544, Nov.
2000.

[18] Y.Y. Al-Salqan and C.K. Chang, “Temporal Relations and
Synchronization Agents,” IEEE Multimedia, vol. 3, pp. 30-39, 1996.

[19] R. Valk, “On the Computational Power of Extended Petri Nets,”
Proc. Math. Foundations of Computer Science 1978, pp. 526-535, 1978.

[20] K. Rothermel and T. Helbig, “An Adaptive Protocol for
Synchronizing Media Streams,” Multimedia Systems, vol. 5, no. 5,
pp. 324-336, 1997.

[21] N.T. Bhatti, M.A. Hiltunen, R.D. Schlichting, and W. Chiu,
“Coyote: A System for Constructing Fine-Grain Configurable
Communication Services,” ACM Trans. Computer Systems, vol. 16,
no. 4, pp. 321-366, Nov. 1998.

[22] W.T. Tsai, C.V. Ramamoorthy, W.K. Tsai, K. Wei, and O.
Nishiguchi, “Adaptive Hierarchical Routing Protocol,” IEEE
Trans. Computers, vol. 38, no. 8, pp. 1059-1075, Aug. 1989.

[23] D.C.A. Bulterman, “SMIL 2.0.2. Examples and Comparisons,”
IEEE Multimedia, vol. 9, no. 1, pp. 74-84, Jan.-Mar. 2002.

Sheng-Uei Guan received the MSc and PhD
degrees from the University of North Carolina at
Chapel Hill. He is currently with the Electrical
and Computer Engineering Department at the
National University of Singapore. He has also
worked in a prestigious R&D organization for
several years, serving as a design engineer,
project leader, and manager. He also served as
a member on the Republic of China Information
& Communication National Standard Draft Com-

mittee. After leaving industry, he joined Yuan-Ze University in Taiwan for
three and a half years. He served as deputy director for the Computing
Center and also as the chairman for the Department of Information and
Communication Technology. Later, he joined La Trobe University with
the Department of Computer Science and Computer Engineering, where
he helped to create a new multimedia systems stream.

Wei Liu received the BEng degree in electrical
engineering from Xian Jiaotong University in
1994, the MEng degree in electrical engineering
from Xian Jiaotong University in 1997, and the
MEng degree in electrical and computer en-
gineering from the National University of Singa-
pore in 2002. Currently, she is a research
engineer in the Department of Electrical and
Computer Engineering at the National University
of Singapore. Her research interests include

multimedia systems, augmented and virtual reality, and human
computer interaction.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

932 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

	footer1:

