704 research outputs found

    Letter from S. C. Grun to P. M. Colson

    Get PDF
    Letter from S. C. Grun to P. M. Colson. The one-page handwritten note is dated 18 May 1907

    Debris and micrometeorite impact measurements in the laboratory

    Get PDF
    A method was developed to simulate space debris in the laboratory. This method, which is an outgrowth of research in inertial confinement fusion (ICF), uses laser ablation to accelerate material. Using this method, single 60 micron aluminum spheres were accelerated to 15 km/sec and larger 500 micron aluminum spheres were accelerated to 2 km/sec. Also, many small (less than 10 micron diameter) irregularly shaped particles were accelerated to speeds of 100 km/sec

    Athermal annealing of Si-implanted GaAs and InP

    No full text
    GaAs and InP crystals ion implanted with Si were athermally annealed by exposing each crystal at a spot of ~2 mm diameter to a high-intensity 1.06 Ī¼m wavelength pulsed laser radiation with ~4 J pulse energy for 35 ns in a vacuum chamber. As a result a crater is formed at the irradiated spot. The crater is surrounded by a dark-colored ring-shaped region which is annealed by mechanical energy generated by rapidly expanding hot plasma that formed on the exposed spot. The electrical characteristics of this annealed region are comparable to those of a halogen-lamp annealed sample. No redistribution of impurities due to transient diffusion is observed in the implant tail region. In x-ray diffraction measurements, a high angle side satellite peak due to lattice strain was observed in the crater and near crater regions of the athermally annealed sample in addition to the main Bragg peak that corresponds to the pristine sample. This high angle side satellite peak is not observed in regions away from the crater (ā‰„5 mm from the center of the crater in GaAs)

    The Cosmic Infrared Background at 1.25 microns and 2.2 microns using DIRBE and 2MASS: a contribution not due to galaxies ?

    Get PDF
    Using the 2MASS 2nd Incremental Data Release and the Zodiacal-Subtracted Mission Average maps of COBE/DIRBE, we estimate the cosmic background in the J (1.25 micron) and K (2.2 microns) bands using selected areas representing 550 square degrees of sky. We find a J background of 22.9 \pm 7.0 kJy/sr (54.0 \pm 16.8 nW/m2/sr) and a K background of 20.4 \pm 4.9 kJy/sr (27.8 \pm 6.7 nW/m2/sr). This large scale study shows that the main uncertainty comes from the residual zodiacal emission. The cosmic background we obtain is significantly higher than integrated galaxy counts (3.6 \pm 0.8 kJy/sr and 5.3 \pm 1.2 kJy/sr for J and K, respectively), suggesting either an increase of the galaxy luminosity function for magnitudes fainter than 30 or the existence of another contribution to the cosmic background from primeval stars, black holes, or relic particle decay.Comment: 20 pages, 6 figures, accepted in Ap

    The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: IV. Cosmological Implications

    Full text link
    In this paper we examine the cosmological constraints of the recent DIRBE and FIRAS detection of the extragalactic background light between 125-5000 microns on the metal and star formation histories of the universe.Comment: 38 pages and 9 figures. Accepted for publications in The Astrophysical Journa

    Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors

    Full text link
    We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between 0.10.1 and $1.0 \ bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and experienced strong radiative cooling resulting in post-shock compressions of { \times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.Comment: HEDLA 2016 conference proceeding

    Differentiating normal and problem gambling: a grounded theory approach.

    Get PDF
    A previous study (Ricketts &amp; Macaskill, 2003) delineated a theory of problem gambling based on the experiences of treatment seeking male gamblers and allowed predictions to be made regarding the processes that differentiate between normal and problem gamblers. These predictions are the focus of the present study, which also utilised a grounded theory approach, but with a sample of male high frequency normal gamblers. The findings suggest that there are common aspects of gambling associated with arousal and a sense of achievement. The use of gambling to manage negative emotional states differentiated normal and problem gambling. Perceived self-efficacy , emotion management skills and perceived likelihood of winning money back were intervening variables differentiating problem and normal gamblers.</p

    Wolf-Rayet and LBV Nebulae as the Result of Variable and Non-Spherical Stellar Winds

    Full text link
    The physical basis for interpreting observations of nebular morphology around massive stars in terms of the evolution of the central stars is reviewed, and examples are discussed, including NGC 6888, OMC-1, and eta Carinae.Comment: To be published in the Proceedings of IAU Colloquium 169 on Variable and Non-Spherical Stellar Winds in Luminous Hot Stars, ed. B. Wolf (Springer-Verlag, Berlin, Heidelberg). 7 pages, including 5 figures. A full-resolution version of fig 4 is available in the version at http://www.mpia-hd.mpg.de/theory/preprints.html#maclo

    Well posedness of an isothermal diffusive model for binary mixtures of incompressible fluids

    Full text link
    We consider a model describing the behavior of a mixture of two incompressible fluids with the same density in isothermal conditions. The model consists of three balance equations: continuity equation, Navier-Stokes equation for the mean velocity of the mixture, and diffusion equation (Cahn-Hilliard equation). We assume that the chemical potential depends upon the velocity of the mixture in such a way that an increase of the velocity improves the miscibility of the mixture. We examine the thermodynamic consistence of the model which leads to the introduction of an additional constitutive force in the motion equation. Then, we prove existence and uniqueness of the solution of the resulting differential problem
    • ā€¦
    corecore