454 research outputs found
KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response.
The endoplasmic reticulum (ER) unfolded protein response (UPR(er)) pathway plays an important role in helping pancreatic β cells to adapt their cellular responses to environmental cues and metabolic stress. Although altered UPR(er) gene expression appears in rodent and human type 2 diabetic (T2D) islets, the underlying molecular mechanisms remain unknown. We show here that germline and β cell-specific disruption of the lysine acetyltransferase 2B (Kat2b) gene in mice leads to impaired insulin secretion and glucose intolerance. Genome-wide analysis of Kat2b-regulated genes and functional assays reveal a critical role for Kat2b in maintaining UPR(er) gene expression and subsequent β cell function. Importantly, Kat2b expression is decreased in mouse and human diabetic β cells and correlates with UPR(er) gene expression in normal human islets. In conclusion, Kat2b is a crucial transcriptional regulator for adaptive β cell function during metabolic stress by controlling UPR(er) and represents a promising target for T2D prevention and treatment
Cdkn2a deficiency promotes adipose tissue browning.
Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis.
We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients.
We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression.
Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders
Minimal state models for ionic channels involved in glucagon secretion
Pancreatic alpha cells synthesize and release glucagon. This hormone along with insulin, preserves blood glucose levels within a physiological range. During low glucose levels, alpha cells exhibit electrical activity related to glucagon secretion. In this paper, we introduce minimal state models for those ionic channels involved in this electrical activity in mice alpha cells. For estimation of model parameters, we use Monte Carlo algorithms to fit steadystate channel currents. Then, we simulate dynamic ionic currents following experimental protocols. Our aims are 1) To understand the individual ionic channel functioning and modulation that could affect glucagon secretion, and 2) To simulate ionic currents actually measured in voltage-clamp alpha-cell experiments in mice. Our estimations indicate that alpha cells are highly permeable to sodium and potassium which mainly manage action potentials. We have also found that our estimated N-type calcium channel population and density in alpha cells is in good agreement to those reported for L-type calcium channels in beta cells. This finding is strongly relevant since both, L-type and N-type calcium channels, play a main role in insulin and glucagon secretion, respectively
Inhibitory Effects of Leptin on Pancreatic α-Cell Function
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)OBJECTIVE-Leptin released from adipocytes plays a key role in the control of food intake, energy balance, and glucose homeostasis. In addition to its central action, leptin directly affects pancreatic beta-cells, inhibiting insulin secretion, and, thus, modulating glucose homeostasis. However, despite the importance of glucagon secretion in glucose homeostasis, the role of leptin in a-cell function has not been studied in detail. In the present study, we have investigated this functional interaction. RESEARCH DESIGN AND METHODS-The presence of leptin receptors (ObR) was demonstrated by RT-PCR analysis, Western blot, and immunocytochemistry. Electrical activity was analyzed by patch-clamp and Ca(2+) signals by confocal microscopy. Exocytosis and glucagon secretion were assessed using fluorescence methods and radioimmunoassay, respectively. RESULTS-The expression of several ObR isoforms (a-e) was detected in glucagon-secreting alpha TC1-9 cells. ObRb, the main isoform involved in leptin signaling, was identified at the protein level in alpha TC1-9 cells as well as in mouse and human alpha-cells. The application of leptin (6.25 nmol/l) hyperpolarized the alpha-cell membrane potential, suppressing the electrical activity induced by 0.5 mmol/l glucose. Additionally, leptin inhibited Ca(2+) signaling in alpha TC1-9 cells and in mouse and human alpha-cells within intact islets. A similar result occurred with 0.625 nmol/l leptin. These effects were accompanied by a decrease in glucagon secretion from mouse islets and were counteracted by the phosphatidylinositol 3-kinase inhibitor, wortmannin, suggesting the involvement of this pathway in leptin action. CONCLUSIONS-These results demonstrate that leptin inhibits alpha-cell function, and, thus, these cells are involved in the adipo-insular communication. Diabetes 58:1616-1624, 200958716161624Ministerio de Educacion y Ciencia [BFU2007-67607, PCI2005-A7-0131, BFU2008-01492, SAF2006-07382]Ministerio de Ciencia a InnovacionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Ministerio de Educacion y Ciencia [BFU2007-67607, PCI2005-A7-0131, BFU2008-01492, SAF2006-07382]FAPESP [2008/53811-8
Differential effects of the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, on Akt activation and apoptosis
In this study, we investigated the role of PI4P synthesis by the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, in epidermal growth factor (EGF)-stimulated phosphoinositide signaling and cell survival. In COS-7 cells, knockdown of either isozyme by RNA interference reduced basal levels of PI4P and PI(4,5)P2, without affecting receptor activation. Only knockdown of PI4KIIα inhibited EGF-stimulated Akt phosphorylation, indicating that decreased PI(4,5)P2 synthesis observed by loss of either isoform could not account for this PI4KIIα-specific effect. Phospholipase Cγ activation was also differentially affected by knockdown of either PI4K isozyme. Overexpression of kinase-inactive PI4KIIα, which induces defective endosomal trafficking without reducing PI(4,5)P2 levels, also reduced Akt activation. Furthermore, PI4KIIα knockdown profoundly inhibited cell proliferation and induced apoptosis as evidenced by the cleavage of caspase-3 and its substrate poly(ADP-ribose) polymerase. However, in MDA-MB-231 breast cancer cells, apoptosis was observed subsequent to knockdown of either PI4KIIα or PI4KIIIβ and this correlated with enhanced proapoptotic Akt phosphorylation. The differential effects of phosphatidylinositol 4-kinase knockdown in the two cell lines lead to the conclusion that phosphoinositide turnover is inhibited through PI4P substrate depletion, whereas impaired antiapoptotic Akt signaling is an indirect consequence of dysfunctional endosomal trafficking
Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion.
AIMS/HYPOTHESIS: We assessed whether per-arnt-sim (PAS) domain-containing protein kinase (PASK) is involved in the regulation of glucagon secretion. METHODS: mRNA levels were measured in islets by quantitative PCR and in pancreatic beta cells obtained by laser capture microdissection. Glucose tolerance, plasma hormone levels and islet hormone secretion were analysed in C57BL/6 Pask homozygote knockout mice (Pask-/-) and control littermates. Alpha-TC1-9 cells, human islets or cultured E13.5 rat pancreatic epithelia were transduced with anti-Pask or control small interfering RNAs, or with adenoviruses encoding enhanced green fluorescent protein or PASK. RESULTS: PASK expression was significantly lower in islets from human type 2 diabetic than control participants. PASK mRNA was present in alpha and beta cells from mouse islets. In Pask-/- mice, fasted blood glucose and plasma glucagon levels were 25 ± 5% and 50 ± 8% (mean ± SE) higher, respectively, than in control mice. At inhibitory glucose concentrations (10 mmol/l), islets from Pask-/- mice secreted 2.04 ± 0.2-fold (p < 0.01) more glucagon and 2.63 ± 0.3-fold (p < 0.01) less insulin than wild-type islets. Glucose failed to inhibit glucagon secretion from PASK-depleted alpha-TC1-9 cells, whereas PASK overexpression inhibited glucagon secretion from these cells and human islets. Extracellular insulin (20 nmol/l) inhibited glucagon secretion from control and PASK-deficient alpha-TC1-9 cells. PASK-depleted alpha-TC1-9 cells and pancreatic embryonic explants displayed increased expression of the preproglucagon (Gcg) and AMP-activated protein kinase (AMPK)-alpha2 (Prkaa2) genes, implying a possible role for AMPK-alpha2 downstream of PASK in the control of glucagon gene expression and release. CONCLUSIONS/INTERPRETATION: PASK is involved in the regulation of glucagon secretion by glucose and may be a useful target for the treatment of type 2 diabetes
Loss of ZnT8 function protects against diabetes by enhanced insulin secretion.
A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D
- …