13 research outputs found

    Development of tools and methods for genomic selection in the European seabass and gilthead seabream

    No full text
    Le bar (Dicentrarchus labrax) et la daurade (Sparus aurata) sont deux espĂšces majeures de l’aquaculture mĂ©diterranĂ©enne. Comme tout Ă©levage, l’aquaculture doit faire face Ă  de nombreuses Ă©pidĂ©mies provoquant de fortes mortalitĂ©s, que l’on peut tenter de contrĂŽler par sĂ©lection gĂ©nĂ©tique. Avec la facilitĂ© d’accĂšs aux technologies de sĂ©quençage du gĂ©nome et aux outils gĂ©nomiques, la question de l’utilisation de donnĂ©es gĂ©nomiques en sĂ©lection se pose. L’objectif de cette thĂšse Ă©tait de dĂ©velopper des outils et des mĂ©thodes pour la mise en place de la sĂ©lection gĂ©nomique pour amĂ©liorer la rĂ©sistance Ă  la nodavirose et Ă  la vibriose chez le bar et Ă  la pasteurellose chez la daurade.Dans un premier temps, nous avons dĂ©veloppĂ© un outil simple et opĂ©rationnel d’assignation de parentĂ© basĂ© sur une mĂ©thode permettant d’assigner des individus Ă  leurs parents Ă  partir des probabilitĂ©s mendĂ©liennes de transmission estimĂ©es sur la population Ă  assigner. Ensuite, l’architecture gĂ©nĂ©tique des caractĂšres a Ă©tĂ© Ă©tudiĂ©e par l’estimation des composantes de la variance et par dĂ©tection de QTL. Nous avons montrĂ© que la rĂ©sistance Ă  la nodavirose chez le bar est un caractĂšre oligogĂ©nique, en partie contrĂŽlĂ© par un QTL Ă  effet fort et avec une hĂ©ritabilitĂ© modĂ©rĂ©e. Nous avons Ă©galement pu montrer que la rĂ©sistance Ă  la vibriose chez le bar et de la rĂ©sistance Ă  la pasteurellose chez la daurade sont des caractĂšres polygĂ©niques dont les hĂ©ritabilitĂ©s sont modĂ©rĂ©es. Enfin, nous avons Ă©valuĂ© la prĂ©cision de la sĂ©lection gĂ©nomique avec diffĂ©rentes densitĂ©s de marqueurs et diffĂ©rentes tailles de populations d’entrainement, en utilisant ou non l’information sur le QTL de rĂ©sistance Ă  la nodavirose. Nous avons montrĂ© que la sĂ©lection gĂ©nomique permet un gain de prĂ©cision compris entre 8.9% et 24.5% pour les espĂšces et les caractĂšres Ă©tudiĂ©s. De plus, la prise en compte de l’information du QTL de rĂ©sistance Ă  la nodavirose chez le bar permet d’augmenter la prĂ©cision de 10.5% Ă  26.3%.Cette thĂšse a permis d’évaluer l’efficacitĂ© de la sĂ©lection gĂ©nomique chez le bar et la daurade, de dĂ©velopper des outils facilitant l’utilisation des donnĂ©es gĂ©nomique dans les schĂ©mas de sĂ©lection. Nous disposons ainsi d’un cadre opĂ©rationnel pour mettre en place et optimiser la sĂ©lection gĂ©nomique chez le bar et la daurade.European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) are two major species of Mediterranean aquaculture. As any animal production, aquaculture must face many disease outbreaks leading to high mortality, that can be controlled by selective breeding. With easy access to whole genome sequencing technologies and genomic tools, the use of genomic data in selective breeding has to be considered. The purpose of this thesis was to develop tools and methods to implement genomic selection to improve resistance to viral nervous necrosis and vibriosis in seabass and to pasteurellosis in seabream.First, we developed a simple and efficient parentage assignment tool based on a method using Mendelian transmission probabilities, estimated from the population of offspring to assign. Then, we studied the genetic architecture of the traits by variance components estimation and QTL detection. We showed that the viral nervous necrosis resistance in seabass is an oligogenic traitcontrolled by a strong effect QTL with a moderate heritability. We also showed that resistance to vibriosis in seabass and to pasteurellosis in seabream are two polygenic traits with moderate heritability. Finally, we evaluated the accuracy of genomic selection with different marker densities and different training population sizes, using or not the information on the viral nervous necrosis resistance QTL in seabass. We showed that genomic selection increased selection accuracy by 8.9% to 24.5% in the species and traits we studied. Then, we showed that accounting of the viral nervous necrosis resistance QTL information in seabass increased selection accuracy by 10.5% to 26.3%.This thesis evaluated the efficiency of the genomic selection in seabass and seabream, and develop tools making the use of genomic data in breeding schemes easier. Thus, we now have a framework to implement and optimize the genomic selection in seabass and seabream

    Développement d'outils et de méthodes de sélection génomique chez le bar et la daurade

    No full text
    European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) are two major species of Mediterranean aquaculture. As any animal production, aquaculture must face many disease outbreaks leading to high mortality, that can be controlled by selective breeding. With easy access to whole genome sequencing technologies and genomic tools, the use of genomic data in selective breeding has to be considered. The purpose of this thesis was to develop tools and methods to implement genomic selection to improve resistance to viral nervous necrosis and vibriosis in seabass and to pasteurellosis in seabream.First, we developed a simple and efficient parentage assignment tool based on a method using Mendelian transmission probabilities, estimated from the population of offspring to assign. Then, we studied the genetic architecture of the traits by variance components estimation and QTL detection. We showed that the viral nervous necrosis resistance in seabass is an oligogenic traitcontrolled by a strong effect QTL with a moderate heritability. We also showed that resistance to vibriosis in seabass and to pasteurellosis in seabream are two polygenic traits with moderate heritability. Finally, we evaluated the accuracy of genomic selection with different marker densities and different training population sizes, using or not the information on the viral nervous necrosis resistance QTL in seabass. We showed that genomic selection increased selection accuracy by 8.9% to 24.5% in the species and traits we studied. Then, we showed that accounting of the viral nervous necrosis resistance QTL information in seabass increased selection accuracy by 10.5% to 26.3%.This thesis evaluated the efficiency of the genomic selection in seabass and seabream, and develop tools making the use of genomic data in breeding schemes easier. Thus, we now have a framework to implement and optimize the genomic selection in seabass and seabream.Le bar (Dicentrarchus labrax) et la daurade (Sparus aurata) sont deux espĂšces majeures de l’aquaculture mĂ©diterranĂ©enne. Comme tout Ă©levage, l’aquaculture doit faire face Ă  de nombreuses Ă©pidĂ©mies provoquant de fortes mortalitĂ©s, que l’on peut tenter de contrĂŽler par sĂ©lection gĂ©nĂ©tique. Avec la facilitĂ© d’accĂšs aux technologies de sĂ©quençage du gĂ©nome et aux outils gĂ©nomiques, la question de l’utilisation de donnĂ©es gĂ©nomiques en sĂ©lection se pose. L’objectif de cette thĂšse Ă©tait de dĂ©velopper des outils et des mĂ©thodes pour la mise en place de la sĂ©lection gĂ©nomique pour amĂ©liorer la rĂ©sistance Ă  la nodavirose et Ă  la vibriose chez le bar et Ă  la pasteurellose chez la daurade.Dans un premier temps, nous avons dĂ©veloppĂ© un outil simple et opĂ©rationnel d’assignation de parentĂ© basĂ© sur une mĂ©thode permettant d’assigner des individus Ă  leurs parents Ă  partir des probabilitĂ©s mendĂ©liennes de transmission estimĂ©es sur la population Ă  assigner. Ensuite, l’architecture gĂ©nĂ©tique des caractĂšres a Ă©tĂ© Ă©tudiĂ©e par l’estimation des composantes de la variance et par dĂ©tection de QTL. Nous avons montrĂ© que la rĂ©sistance Ă  la nodavirose chez le bar est un caractĂšre oligogĂ©nique, en partie contrĂŽlĂ© par un QTL Ă  effet fort et avec une hĂ©ritabilitĂ© modĂ©rĂ©e. Nous avons Ă©galement pu montrer que la rĂ©sistance Ă  la vibriose chez le bar et de la rĂ©sistance Ă  la pasteurellose chez la daurade sont des caractĂšres polygĂ©niques dont les hĂ©ritabilitĂ©s sont modĂ©rĂ©es. Enfin, nous avons Ă©valuĂ© la prĂ©cision de la sĂ©lection gĂ©nomique avec diffĂ©rentes densitĂ©s de marqueurs et diffĂ©rentes tailles de populations d’entrainement, en utilisant ou non l’information sur le QTL de rĂ©sistance Ă  la nodavirose. Nous avons montrĂ© que la sĂ©lection gĂ©nomique permet un gain de prĂ©cision compris entre 8.9% et 24.5% pour les espĂšces et les caractĂšres Ă©tudiĂ©s. De plus, la prise en compte de l’information du QTL de rĂ©sistance Ă  la nodavirose chez le bar permet d’augmenter la prĂ©cision de 10.5% Ă  26.3%.Cette thĂšse a permis d’évaluer l’efficacitĂ© de la sĂ©lection gĂ©nomique chez le bar et la daurade, de dĂ©velopper des outils facilitant l’utilisation des donnĂ©es gĂ©nomique dans les schĂ©mas de sĂ©lection. Nous disposons ainsi d’un cadre opĂ©rationnel pour mettre en place et optimiser la sĂ©lection gĂ©nomique chez le bar et la daurade

    Optimization of Genomic Selection to Improve Disease Resistance in Two Marine Fishes, the European Sea Bass (Dicentrarchus labrax) and the Gilthead Sea Bream (Sparus aurata)

    No full text
    International audienceDisease outbreaks are a major threat to the aquaculture industry, and can be controlled by selective breeding. With the development of high-throughput genotyping technologies, genomic selection may become accessible even in minor species. Training population size and marker density are among the main drivers of the prediction accuracy, which both have a high impact on the cost of genomic selection. In this study, we assessed the impact of training population size as well as marker density on the prediction accuracy of disease resistance traits in European sea bass ( Dicentrarchus labrax ) and gilthead sea bream ( Sparus aurata ). We performed a challenge to nervous necrosis virus (NNV) in two sea bass cohorts, a challenge to Vibrio harveyi in one sea bass cohort and a challenge to Photobacterium damselae subsp. piscicida in one sea bream cohort. Challenged individuals were genotyped on 57K–60K SNP chips. Markers were sampled to design virtual SNP chips of 1K, 3K, 6K, and 10K markers. Similarly, challenged individuals were randomly sampled to vary training population size from 50 to 800 individuals. The accuracy of genomic-based (GBLUP model) and pedigree-based estimated breeding values (EBV) (PBLUP model) was computed for each training population size using Monte-Carlo cross-validation. Genomic-based breeding values were also computed using the virtual chips to study the effect of marker density. For resistance to Viral Nervous Necrosis (VNN), as one major QTL was detected, the opportunity of marker-assisted selection was investigated by adding a QTL effect in both genomic and pedigree prediction models. As training population size increased, accuracy increased to reach values in range of 0.51–0.65 for full density chips. The accuracy could still increase with more individuals in the training population as the accuracy plateau was not reached. When using only the 6K density chip, accuracy reached at least 90% of that obtained with the full density chip. Adding the QTL effect increased the accuracy of the PBLUP model to values higher than the GBLUP model without the QTL effect. This work sets a framework for the practical implementation of genomic selection to improve the resistance to major diseases in European sea bass and gilthead sea bream

    APIS: An Auto‐Adaptive Parentage Inference Software that tolerates missing parents

    No full text
    In the context of parentage assignment using genomic markers, key issues are genotyping errors and an absence of parent genotypes because of sampling, traceability or genotyping problems. Most likelihood‐based parentage assignment software programs require a priori estimates of genotyping errors and the proportion of missing parents to set up meaningful assignment decision rules. We present here the R package APIS, which can assign offspring to their parents without any prior information other than the offspring and parental genotypes, and a user‐defined, acceptable error rate among assigned offspring. Assignment decision rules use the distributions of average Mendelian transmission probabilities, which enable estimates of the proportion of offspring with missing parental genotypes. APIS has been compared to other software (CERVUS, VITASSIGN) on a real European seabass (Dicentrarchus labrax) SNP data set. The type I error rate (false positives) was lower with APIS than with other software, especially when parental genotypes were missing, but the true positive rate was also lower, except when the theoretical exclusion power reached 0.99999. In general, APIS provided assignments that satisfied the user‐set acceptable error rate of 1% or 5%, even when tested on simulated data with high genotyping error rates (1% or 3%) and up to 50% missing sires. Because it uses the observed distribution of Mendelian transmission probabilities, APIS is best suited to assigning parentage when numerous offspring (>200) are genotyped. We have demonstrated that APIS is an easy‐to‐use and reliable software for parentage assignment, even when up to 50% of sires are missing
    corecore