1,294 research outputs found

    Waters—Appropriation—Riparian Rights

    Get PDF
    Action by a water district to appropriate and condemn water for domestic uses from a nonnavigable lake. All the riparian land was privately owned by persons who used the lake for boating, bathing, and fishing. One tract was planted in berries and intensively fertilized, and drainage from it seeped into the lake. The trial court held that boating, bathing, fishing, and reasonable agricultural pollution were riparian rights which would be damaged by operation of the state health laws protecting water supplies, and awarded compensation for the resulting depreciation in land values. Appeal. Held: Affirmed. Petition of Clinton Water District, 36 Wn. 2d 284, 218 P. 2d 309 (1950)

    Imaging of single polymer chains based on their elasticity

    Get PDF
    In this work we apply a force modulation technique to a standard atomic force microscope (AFM) in order to study the elasticity of individual polystyrene molecules. The sample mounted on a piezoelectric tube was forced to vibrate along the z direction. The corresponding modulation of the cantilever, which reflects the spring constant of the sample, was phase sensitively detected and measured as a function of the surface topography. The image contrast in these images is based on local variations of the surface elasticity. Compared to the conventional AFM topography image, the elasticity image shows an enhanced contrast with pronounced molecular structure.

    Nesting behaviour influences species-specific gas exchange across avian eggshells

    Get PDF
    Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (GH2O) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell GH2O and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in GH2O has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between GH2O and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher GH2O than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher GH2O than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the GH2O are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher GH2O to overcome this constraint and still achieve optimal water loss during incubation. We also suggest that eggs laid in cup nests and burrows may require a higher GH2O to overcome the increased humidity as a result from the confined nest microclimate lacking air movements through the nest. Taken together, these comparative data imply that species-specific levels of gas exchange across avian eggshells are variable and evolve in response to ecological and physical variation resulting from parental and nesting behaviours

    Strengthening Community Schools Through University Partnerships

    Get PDF
    Given the mounting call for academic achievement gains in America’s public schools— particularly urban schools labeled “failing”—the need for community engagement to tackle a host of underlying social challenges warrants the resources of the nation’s colleges and universities (Harkavy & Hartley, 2009). Because colleges and universities are often underutilized anchors of resources in communities, coordinated alignment of K-12 and higher education goals can create a seamless pipeline of educational attainment for communities challenged to produce high academic achievement. Higher education’s engagement with community schools further helps to address the whole child and their families in K-12 education by expanding the opportunities for the students and community to access necessary support services. Drawing upon experiences of Indiana University Purdue University Indianapolis (IUPUI) and collaboration with its adjacent neighborhoods, this article illustrates the transformative and relevant impact of university and community engagement, as well as new pedagogical approaches to teaching, learning, and training. This article reflects upon the experiences of IUPUI and nearby George Washington Community High School as it can uniquely serve as a roadmap for other school community/university partnerships that are interested in embarking upon a similar education reform path

    GRAPE: GRaphical Abstracted Protein Explorer

    Get PDF
    The region surrounding a protein, known as the surface of interaction or molecular surface, can provide valuable insight into its function. Unfortunately, due to the complexity of both their geometry and their surface fields, study of these surfaces can be slow and difficult and important features may be hard to identify. Here, we describe our GRaphical Abstracted Protein Explorer, or GRAPE, a web server that allows users to explore abstracted representations of proteins. These abstracted surfaces effectively reduce the level of detail of the surface of a macromolecule, using a specialized algorithm that removes small bumps and pockets, while preserving large-scale structural features. Scalar fields, such as electrostatic potential and hydropathy, are smoothed to further reduce visual complexity. This entirely new way of looking at proteins complements more traditional views of the molecular surface. GRAPE includes a thin 3D viewer that allows users to quickly flip back and forth between both views. Abstracted views provide a fast way to assess both a molecule's shape and its different surface field distributions. GRAPE is freely available at http://grape.uwbacter.org

    Oligotyping : differentiating between closely related microbial taxa using 16S rRNA gene data

    Get PDF
    © The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society.. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Methods in Ecology and Evolution 4 (2013): 1111–1119, doi:10.1111/2041-210X.12114.Bacteria comprise the most diverse domain of life on Earth, where they occupy nearly every possible ecological niche and play key roles in biological and chemical processes. Studying the composition and ecology of bacterial ecosystems and understanding their function are of prime importance. High-throughput sequencing technologies enable nearly comprehensive descriptions of bacterial diversity through 16S ribosomal RNA gene amplicons. Analyses of these communities generally rely upon taxonomic assignments through reference data bases or clustering approaches using de facto sequence similarity thresholds to identify operational taxonomic units. However, these methods often fail to resolve ecologically meaningful differences between closely related organisms in complex microbial data sets. In this paper, we describe oligotyping, a novel supervised computational method that allows researchers to investigate the diversity of closely related but distinct bacterial organisms in final operational taxonomic units identified in environmental data sets through 16S ribosomal RNA gene data by the canonical approaches. Our analysis of two data sets from two different environments demonstrates the capacity of oligotyping at discriminating distinct microbial populations of ecological importance. Oligotyping can resolve the distribution of closely related organisms across environments and unveil previously overlooked ecological patterns for microbial communities. The URL http://oligotyping.org offers an open-source software pipeline for oligotyping.This work was supported by the National Institutes of Health [1UH2DK083993 to M.L.S.] and the Alfred P. Sloan Foundation

    Nitrate respiration and diel migration patterns of diatoms are linked in sediments underneath a microbial mat

    Get PDF
    Diatoms are among the few eukaryotes known to store nitrate (NO3−) and to use it as an electron acceptor for respiration in the absence of light and O2. Using microscopy and 15N stable isotope incubations, we studied the relationship between dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and diel vertical migration of diatoms in phototrophic microbial mats and the underlying sediment of a sinkhole in Lake Huron (USA). We found that the diatoms rapidly accumulated NO3− at the mat-water interface in the afternoon and 40% of the population migrated deep into the sediment, where they were exposed to dark and anoxic conditions for ~75% of the day. The vertical distribution of DNRA rates and diatom abundance maxima coincided, suggesting that DNRA was the main energy generating metabolism of the diatom population. We conclude that the illuminated redox-dynamic ecosystem selects for migratory diatoms that can store nitrate for respiration in the absence of light. A major implication of this study is that the dominance of DNRA over denitrification is not explained by kinetics or thermodynamics. Rather, the dynamic conditions select for migratory diatoms that perform DNRA and can outcompete sessile denitrifiers
    • 

    corecore