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Summary

1. Bacteria comprise the most diverse domain of life on Earth, where they occupy nearly every possible ecologi-

cal niche and play key roles in biological and chemical processes. Studying the composition and ecology of bacte-

rial ecosystems and understanding their function are of prime importance. High-throughput sequencing

technologies enable nearly comprehensive descriptions of bacterial diversity through 16S ribosomal RNA gene

amplicons. Analyses of these communities generally rely upon taxonomic assignments through reference data

bases or clustering approaches using de facto sequence similarity thresholds to identify operational taxonomic

units. However, these methods often fail to resolve ecologically meaningful differences between closely related

organisms in complexmicrobial data sets.

2. In this paper, we describe oligotyping, a novel supervised computational method that allows researchers to

investigate the diversity of closely related but distinct bacterial organisms in final operational taxonomic units

identified in environmental data sets through 16S ribosomal RNAgene data by the canonical approaches.

3. Our analysis of two data sets from two different environments demonstrates the capacity of oligotyping at dis-

criminating distinct microbial populations of ecological importance.

4. Oligotyping can resolve the distribution of closely related organisms across environments and unveil previ-

ously overlooked ecological patterns for microbial communities. The URL http://oligotyping.org offers an

open-source software pipeline for oligotyping.
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Introduction

Bacteria represent the most diverse domain of life on Earth

(Pace 1997), with members occupying nearly every natural

niche (Rothschild & Mancinelli 2001). They catalyse chemical

reactions within biogeochemical cycles that sustain habitability

for more complex organisms (Falkowski, Fenchel & Delong

2008). With their diverse metabolic capabilities, bacteria

underpin large food webs by utilizing a wide range of energy

sources to accessible biomass for other organisms’ consump-

tion (Newman & Banfield 2002). Studying the composition

and ecology of microbial ecosystems is of prime importance,

not only for understanding their functional roles, but also for

developing predictive tools that will allow efficient resource

management.

The 16S ribosomal RNA (rRNA) gene commonly serves as

a molecular marker for investigating microbial community

composition and structure. High-throughput sequencing of

16S rRNA gene hypervariable regions allows microbial ecolo-

gists to explore microbial community dynamics over temporal

and spatial scales (Huber et al. 2007). Large 16S gene data

bases and alignments provide a reference framework for map-

ping fragmentary sequences, each of which represents the

occurrence of a microbial taxon in a sampled community. Such

comprehensive studies permit the discovery of fundamental eco-

logical patterns and link microbiomes to ecosystem functioning

or to the health and disease states of hosts that harbour them.

The analysis of microbial communities via 16S rRNA gene

data generally relies upon classification-based approaches that

make taxonomic assignments by comparing each DNA

sequence to reference data bases (Wang et al. 2007; Huse et al.

2008; Liu et al. 2008), or clustering-basedmethods that identify

taxon-independent operational taxonomic units (OTUs) using

a sequence similarity threshold (Schloss & Handelsman 2005;

Schloss et al. 2009; Huse et al. 2010). Both approaches seek to

partition large data sets intomanageable operational units. The

identities and abundances of these units are then commonly

used in alpha- and beta-diversity analyses to investigate links

between community structures and environmental factors.

Both taxonomic assignment and clustering approaches have

critical limitations. Analyses that classify sequence reads by

similarity to taxonomic data base entries may provide poorly

resolved diversity descriptions, especially for samples collected

from high-diversity environments. Reference classifications

based on isolated micro-organisms, such as Bergey’s Manual*Correspondence author. E-mail: meren@mbl.edu
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[5014 species (Garrity 2004)] or the List of Prokaryotic Names

with Standing inNomenclature [LPSN, 12 822 entries (Euzeby

1997)], represent a small fraction of the estimated microbial

diversity in environmental samples (Pace 1997; Sogin et al.

2006; Huse et al. 2010). Despite ongoing efforts to annotate

uncultured clades (Quast et al. 2013), large areas of the 16S

reference tree offer a poor taxonomic resolution due to lack

of such isolated representatives. In contrast, clustering

approaches that utilize sequence similarities to define member-

ship in a phylogenetic assemblage have dramatically expanded

the number of inferredOTUs.However, researchers are forced

to employ relatively low similarity thresholds (such as de facto

similarity threshold of 96% or 97%) to minimize inflation of

the number of OTUs because of random sequencing errors

(Huse et al. 2010; Kunin et al. 2010). Such a requisite makes it

impossible to identify organisms in communities that differ

from each other by a very small number of nucleotides.

The 16S rRNA gene has limited specificity (e.g. two distant

organisms may have identical 16S rRNA genes), yet it is very

sensitive, since a single nucleotide difference at the 16S rRNA

gene level can predict remarkable genomic variation (Ward

et al. 1998; Thompson et al. 2005). Unravelling complex rela-

tionships between bacteria and their environments often

requires information about microbial diversity at finer scales

when closely related but subtly distinct gene sequences repre-

sent separate entities in a microbial community. However,

comparisons to sequences in annotated data bases and cluster-

ing methods will rarely if ever fully resolve very closely related

sequences into distinct taxonomic units.

Here we describe the use of oligotyping, a novel supervised

computational method that can elucidate concealed diversity

within the final operational units of classification or clustering

approaches. Oligotyping relies on the information that stems

from the entropy analysis of variable sites in sequences that ini-

tially map to the same taxon in molecular data bases or that

aggregate together in cluster analyses. Unlike classification or

clusteringmethods that compare all positions in sequence reads

to assess similarity, oligotyping utilizes only themost discriminat-

ing information by focusing on the variable sites revealed by the

entropy analysis to identify highly refined taxonomic units

(hereafter called oligotypes).We also present a user-friendly open-

source software pipeline for oligotyping, which guides the oligo-

typing analysis and provides output files in standard formats that

can be further analysed by third-party software packages.

Through oligotyping, we previously identified meaningful

subpopulations of a single species in a humanmicrobiome data

set where the variation between different members displayed as

little as 0�2% variation in short hypervariable regions of 16S

rRNA genes (Eren et al. 2011). In this study, we expand the

scope of oligotyping and demonstrate that it can successfully

resolve key microbial diversity among numerically and ecolog-

ically important microbial taxa. We validate the method by re-

analysing Bacteroides diversity in a previously published

HumanMicrobiome Project (HMP) data set and Pelagibacter

diversity from an unpublished coastal marine environment

data set. We also present a stepwise procedure to facilitate

oligotyping analyses bymicrobial ecologists.

Materials andmethods

OLIGOTYPING

After identifying sequences of interest (e.g. sequences assigned to the

same taxonomical group or clustered together in one OTU), and

optionally performing sequence alignment, oligotyping analysis entails

(1) systematically identifying nucleotide positions that represent infor-

mation-rich variation among closely related sequences, and (2) generat-

ing oligotypes. Appendix S1 provides a detailed example.

Performing sequence alignment

The identification of similarities and differences between DNA

sequences requires the comparison of nucleotide residues at positions

that share a common evolutionary history. For oligotyping, the artifi-

cial insertion or deletion of bases (indels) in sequence reads versus natu-

rally occurring length variation imposes different constraints on data

analyses. The former requires the use of alignment tools for the inser-

tion of gaps that will dissipate artificial length variations and align sites

that share a common evolutionary history. In contrast, oligotyping of

sequences that contain few artificially introduced indels only need to

start at the same evolutionarily conserved position and extend for the

same number of nucleotides. The frequency of indels varies widely for

different sequencing platforms (Loman et al. 2012). For instance, the

occurrence of homopolymeric region-associated indels, which are com-

mon in both untreated and denoised (Quince et al. 2011) sequence

reads fromRoche GS-FLX or Ion Torrent PGMplatforms, requires a

DNA sequence alignment step and procedure to trim all reads to the

same length prior to oligotyping, because non-biological positional

shifts in sequencing reads will hinder the identification of variable sites

that can discriminate between closely related taxa and will inflate the

number of identified oligotypes in later steps. Luckily, an efficient tem-

plate-based aligner [such as PyNAST (Caporaso et al. 2010a)] against

a curated template [such as Greengenes (McDonald et al. 2012)]

enables the alignment of hundreds of thousands of reads within hours

on an average laptop computerwith sufficient accuracy for oligotyping.

In contrast, oligotyping analysis does not require an alignment step for

Illumina-generated data since the number of sequencing cycles deter-

mines read length, and indels are rare (Loman et al. 2012).

Selecting nucleotide positions that present variation

The concatenation of nucleotides from information-rich, variable posi-

tions in sequencing reads defines an oligotype. Oligotypes converge

towards the minimal number of nucleotide positions that will explain

the maximum amount of biological diversity. Strategies for identifying

appropriate variable regions in a collection of reads range from simple

measurements of sequence conservation to more sophisticated statisti-

cal techniques that employ complex models (Margulies et al. 2003;

Cooper et al. 2005; Asthana et al. 2007). The oligotyping software

pipeline utilizes Shannon entropy (Shannon 1948) as the default

method to identify positional variation to facilitate the identification of

nucleotide positions of interest. Shannon entropy lies at the core of

widely used diversity indices (Jost 2006) and has a scalable capacity to

detect uncertainty in a random variable that has information content.

Shannon entropy quantifies the extent to which a discrete distribution

(that assigns a probability to some discrete events) deviates from a dis-

tributionwith amass concentrated at one event (i.e. with only one event

having probability 1, and all other events having probability 0). In

particular, Shannon entropy is zero on a distribution whose mass is
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concentrated on one event and attains its maximum value, log(n),

where n is the number of events, on the probability distribution with

probability of each event equal to 1/n. Thus, while Shannon entropy of

the distribution of different nucleotides in ‘AAAAAAAA’ equals to 0,

it would be log(4) for ‘AACCTTGG’. Once the entropy of each col-

umn in an alignment is known, the oligotyping process can use nucleo-

tide positions that present the highest entropy values (Fig. 1 and

Appendix S1). The key advantage of oligotyping is the identification

and utilization of only the most discriminating information among

reads, instead of depending on nucleotide conservation over their full

length to estimate similarity. With this strategy, oligotyping discards

redundant information that does not contribute to further identifica-

tion of different groups and provides improved explanations for the

inferred community structure represented by closely related but distinct

groups of reads (see Appendix S2 for comparison of oligotyping and

OTU clustering results of anE. coli data set withminimal parameters).

Generating oligotypes

Entropy profiles identify information-rich nucleotide positions that the

user selects and the pipeline concatenates to define oligotypes. Initial

entropy analysis may not be sufficient to identify all nucleotide

positions that would resolve all oligotypes. However, after the initial

run, a supervised strategy can identify variable sites that will allow

decomposition into additional oligotypes. Iterative analyses can further

resolve diversity patterns through the inclusion of additional nucleotide

positions. Upon completion, the process generates for each sample in

the data set oligotype profiles and distribution patterns (AC and TG in

Fig. 1) for beta-diversity analyses. The oligotyping pipeline generates a

comprehensive staticHTMLoutput, throughwhich the user can evalu-

ate oligotyping results and supervise the oligotyping process until all

oligotypes have converged. An oligotype has converged if additional

decomposition does not generate new oligotypes that exhibit differen-

tial abundances in different samples (or environments). See Appendix

S1 for detailed workflow of oligotyping, stop criteria, best practices

and example oligotyping outputs that facilitate user supervision.

Reducing the impact of errors

Oligotyping assumes that quality-filtering techniques have corrected or

eliminated most reads that contain sequencing errors. However, even

the most effective quality filtering (Qu, Hashimoto & Morishita 2009;

Schroder et al. 2009; Bravo & Irizarry 2010; Leek et al. 2010; Mea-

cham et al. 2011; Minoche, Dohm&Himmelbauer 2011; Quince et al.

2011; Benjamini & Speed 2012; Victoria et al. 2012) will not produce

error-free data sets. Oligotyping, by using only a fraction of each read

to define closely related but distinct organisms, drastically diminishes

the actual number of nucleotides used for read comparison. However,

during the generation of oligotypes, any sequencing error that may

have occurred at one of the selected sites will indeed spawn a new oligo-

type. The pipeline implements various parameters that help to identify

and discard such noisy oligotypes and reduce the impact of sequencing

errors on results. These include (s) the minimum number of samples in

which an oligotype is expected to be present, (a) the minimum per cent

abundance of an oligotype in at least one sample, (A) the minimum

actual abundance of an oligotype across all samples and (M) the mini-

mum count of themost abundant unique sequence in an oligotype. The

pipeline can also incorporate machine-reported quality scores to set (q)

the minimum quality threshold for bases to be used for oligotyping. As

with the selection of variable positions for oligotyping, the noise

removal step requires user input. Default values are set at s = 1, a = 0,

A = 0 andM = 4. These values perform well for data sets that contain

1000–10 000 reads and 1–10 samples. However, data set size and the

number of samples should be considered when setting the value of each

parameter. Our empirical tests with the oligotyping pipeline showed

that the criteria s andM eliminate noise most efficiently. For instance,

if there are biological or technical replicates in the experiment, setting s

to match the number of replicates will eliminate oligotypes that appear

in fewer than s samples. For very large data sets, settingM to equal the

average number of reads per sample divided by 1000 will eliminate oli-

gotypes with very low substantive abundance. Although they are simi-

lar, M is more efficient than A at reducing noise. Parameter A is

comparable to the ‘minimum OTU size’ parameter used by OTU clus-

tering pipelines. However, the actual number of reads that form an

OTU rarely indicates the robustness of an OTU alone. For instance,

two OTUs, one with 10 unique reads with the abundance of 1 and

another with 1 unique read with the abundance of 10, would have the

same abundance, but different authenticity. Both would have a param-

eter value of 10, but the first has a substantive abundance, M, of 1 and

the latter a substantive abundance, M, of 10. Hence, we suggestM serve

as a noise reduction step instead of the more conventional parameter

A. The oligotyping pipeline tracks the read fate throughout the process

to inform the user of the number of reads lost by quality-filtering crite-

Fig. 1. Major steps of oligotyping analysis. In step 1, reads that were

identified as one taxon or a single OTU from all samples in a data set

are gathered. In the hypothetical example given in the figure, reads with

very subtle nucleotide variation (positions of variation are highlighted

with green) are shared between three samples, A, B andC. In step 2, the

collection of reads is analysed with Shannon entropy, during which the

variable positions are recovered. In step 3, each read is affiliated with

the base they possess at the high entropy position among the reads, and

thus, oligotypes are generated (AC and TG in this mock example), and

finally, oligotype profiles, depicted as pie charts, are generated to

explain differences among samples.
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rion and sample, which makes it possible to detect potential biases in

eliminated reads among samples.

The open-source software pipeline, tutorials and example analyses

are available fromhttp://oligotyping.org.

BACTEROIDES IN HUMAN GUT MICROBIOMES

Sample collection, sequencing, quality filtering and data

availability

Sample collection, sequencing and quality filtering are described in

detail in a previously published study (Yatsunenko et al. 2012).

Oligotyping analysis

We used 1 093 740 274 quality-controlled single 101 nucleotide long

IlluminaHiSeq reads from 531 human gut microbiome samples for oli-

gotyping (data available through the NCBI Sequence Read Archive,

accession number ERX115504). We assigned taxonomy for

785 534 577 reads with minimal sequence length of 101 nucleotides

with GAST (Huse et al. 2008). Of the 91 990 654 reads that were clas-

sified as Bacteroides, we randomly selected up to 100 000 reads from

each sample. The total data set for oligotyping included 30 637 709

Bacteroides reads from529 samples (two of the samples lackedBactero-

ides sequences). Since homopolymer region-associated insertion/dele-

tion errors are not common in Illumina data, we did not perform an

alignment. After the initial entropy analysis, we performed oligotyping

using 31 variable sites (Fig. S1). To reduce the noise in the results, we

required that each oligotype must (1) appear in at least three samples,

(2) occur in more than 0�5% of the reads of at least one sample and (3)

represent a minimum of 500 reads in all samples combined.We arrived

at these values by starting with default suggestions and then testing a

range of values. After removal of oligotypes that did not meet these cri-

teria, the analysis retained 28 966 870 reads (94�5%), an average of

54 757 reads per sample. However, samples from Malawi and the

Amazon had an average of only 8445 and 18 931 Bacteroides reads,

respectively, while US samples had an average of 82 891. Oligotyping

analysis identified 385 oligotypes, 197 of which perfectly matched

sequences in NCBI’s nr data base over the entire length of their

representative sequence.

Generating the cladogram

Presence or absence of oligotypes in data sets from Malawi, Amazon

and the US was determined based on a minimum abundance of 0�01%
in a data set, and results were superimposed on the cladogram of

oligotypes generated using MrBayes (version 3.1.2, http://mrbayes.

sourceforge.net/) (Ronquist & Huelsenbeck 2003) and depicted using

the Interactive Tree of Life (Letunic&Bork 2007).

PELAGIBACTER SUCCESSION PATTERNS IN L ITTLE

SIPPEWISSETT MARSH

Sample collection, sequencing and quality filtering

Surface water samples were collected in sterile 1-L PET bottles during

low tide at seven stations (Fig. S2) in Little SippewissettMarsh (Massa-

chusetts, USA). The samples were collected weekly from 31 May to 4

September 2007 and then monthly until September 2008. Water

samples were kept on ice and brought back to the laboratory for filtra-

tion through polyethersulphone membrane capsule filters (0�22 µm

pore size Sterivex, Millipore, Billerica, MA) followed by DNA extrac-

tion and purification using a modified salt precipitation method

(PUREGENE,Gentra Systems,Minneapolis,MN,USA) as described

in (Sinigalliano et al. 2007). Bacterial 16S rRNA amplicons spanning

the V4 through V6 regions were amplified using fusion primers,

sequenced from the V6 end on a Roche GS-FLX 454 instrument using

Titanium protocols, and quality-filtered and trimmed as described in

(Marteinsson et al. 2013).

Oligotyping analysis and noise reduction

For oligotyping analysis, we used 239 887 quality-controlled Pelagib-

acter V6-V4 reads from 189 samples classified by GAST (Huse et al.

2008). The PyNAST algorithm (Caporaso et al. 2010a) aligned the 454

reads against the Greengenes (McDonald et al. 2012) multiple

sequence alignment template (97%OTUs, 6 October 2010 release).We

identified 11 high entropy locations for oligotyping. Due to read length

(>450 nt), error towards the end of reads was extremely high. To reduce

the noise in the results, we required that each oligotype must (1) appear

in at least three samples and (2) have a minimum of 50 copies of the

most abundant unique sequence. After the removal of oligotypes that

did not meet these criteria, the analysis retained 223 631 reads

(93�22%), an average of 1895 reads per sample. This analysis identified

22 oligotypes, 16 of which had at least one perfectmatch for their repre-

sentative sequences in rRNA entries in NCBI’s non-redundant (nr)

data base.

CLUSTERING ANALYSES AND BIOMARKER DISCOVERY

Clustering of Bacteroides and Pelagibacter data sets was carried out

using a 97% similarity threshold for OTU formation. Clustering was

done with QIIME (v1.5) (Caporaso et al. 2010b) using the default UC-

LUSTmethod (Edgar 2010). We used LEfSe to identify biomarkers in

both clustering and oligotyping results (Segata et al. 2011).

Results

Weused oligotyping to explain bacterial diversity in two genera

(Bacteroides andPelagibacter) in data sets for two distinct envi-

ronments (human gut and saltmarsh) using different sequenc-

ing technologies (Illumina and Roche/454). The previously

published human gut data set (Yatsunenko et al. 2012) repre-

sented cross-sectional sampling of human populations across

three continents. In contrast, the previously unpublished salt-

marsh data set included temporally distributed samples. We

also benchmarked oligotyping with a data set that contained

reads fromoneE. coli strain (Appendix S2).

BACTEROIDES IN HUMAN GUT MICROBIOMES

Oligotyping analysis of reads classified as Bacteroides in

human gut microbiomes using published V4 region 16S rRNA

sequences (Yatsunenko et al. 2012) from 531 individuals from

three different continents revealed 385 different oligotypes.

Despite Bacteroides being strongly overrepresented in individ-

uals from the United States compared to the individuals from

Malawi or Venezuela, some Bacteroides oligotypes were only

present in the Malawi and Venezuela samples, revealing fine-
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scale biogeographical patterns between closely relatedBactero-

ides (Fig. 2). We explored whether oligotyping could enhance

the structural description of the data set with respect to Bacte-

roides reads. To investigate the recovery of region-specific

OTUs and oligotypes, we focused on 316 samples collected

from individuals in the US who represent one of five different

demographics (Boulder residents, Missouri-born but now liv-

ing elsewhere in the United States, Philadelphia residents,

St. Louis residents and residents of the greater St. Louis area).

We also clustered reads that mapped to Bacteroides using the

same quality control filtering parameters as employed for oli-

gotyping and a 97% cut-off value to identify 246 OTUs. We

then used LEfSe (Segata et al. 2011), a biomarker discovery

package, to investigate the presence and effect size of region-

specific OTUs and oligotypes. LEfSe identifies an OTU or an

oligotype as a biomarker only if they are consistently abundant

in a group of samples collected from a specific region, and it

estimates the effect size of such biomarkers. Effect size is the

quantification of the magnitude of a biomarker with respect to

its differential mean abundance between groups of samples

(Segata et al. 2011). Briefly, identification of a biomarker

depends on its statistically significant presence in one group,

and the high effect size would indicate the larger difference

between the mean abundance of the biomarker in distinct

groups. We used the default values suggested for both statisti-

cal significance and minimum effect size threshold for biomar-

ker identification. When applied to Bacteroides data, LEfSe

detected higher number of oligotype biomarkers for each

Fig. 2. Bacteroides oligotype distribution inferred from the study published by Yatsunenko et al. (2012). Bars indicate the presence of an oligotype

in a given community; a full-length bar represents oligotypes that occur in 100% of the analysed samples. The lower panel magnifies numbered

regions in the cladogram. Numbers 1, 2 and 3 areBacteroides oligotypes that are more than 97% similar in full length, yet exhibit noteworthy differ-

ences in their geographical distribution. Light yellow background colour on the cladogram marks the oligotypes with perfect matches in NCBI’s

non-redundant nucleotide sequence data base. Number 4 demonstrates several oligotypes that consistently occur in samples from theMalawian and

Amerindian communities but not in samples from the United States. None of the oligotypes in Number 4 have perfect matches in NCBI’s nr data

base. Number 5, on the other hand, shows several oligotypes with similar occurrence patterns in Malawian and Amerindian communities with the

ones shown inNumber 4, but with a remarkably larger presence in the samples collected from the United States. In contrast to Number 4, 3 out of 4

oligotypes listed inNumber 5 have perfectmatches inNCBI’s nr data base.
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region in the United States compared to the OTU biomarkers

(Fig. S3). The only category in which the mean effect size of

OTU biomarkers identified by LEfSe was larger than that of

oligotypes was Boulder, with no statistical significance (Wilco-

xon rank-sum test,P = 0�75). In the remaining four categories,

the mean effect size of discriminant oligotypes was larger than

the mean effect size of OTUs and significantly larger in three of

them (Missouri-born, Philadelphia and St. Louis with

P < 0�05, metropolitan area of St. Louis with P = 0�69). This
result suggests that the oligotypes identified in Bacteroides

reads offer a comparable or higher level of resolution than

OTUs at 97% and oligotypes have increased power for recov-

ering information about distribution patterns.

PELAGIBACTER SUCCESSION PATTERNS IN L ITTLE

SIPPEWISSETT MARSH

Oligotyping analysis of Pelagibacter (a genus in the SAR11

clade) in Little Sippewissett Marsh (LSM) revealed 22

oligotypes and displayed remarkable seasonal variation

(Fig. 3). The two most abundant Pelagibacter oligotypes

(Fig. 3a) differed from each other by only two nucleotides,

which is equivalent to 99�57% sequence identity across the

entire amplicon read (459 nt). BLAST searches for representa-

tive sequences of two oligotypes revealed that they are identical

to the 16S rRNA gene of two genome-sequenced Pelagibacter

strains at the V6-V4 region: Candidatus Pelagibacter ubique

HTCC1062 and Pelagibacter strain HTCC7211. These strains

are members of the SAR11 clade subgroup S1a (Morris et al.

2002), and they are further grouped into internal transcribed

spacer (ITS)-based phylotype P1a.1 and P1a.3, respectively

(Stingl, Tripp&Giovannoni 2007). Recent studies showed that

phylotype P1a.1 predominates in polar regions, while the phyl-

otype P1a.3 represents the dominant Pelagibacter in tropical

regions (Brown et al. 2012). In the LSM data set, we observed

the dominance of the oligotype that matched the polar phylo-

type P1a.1 from December to June, while the dominant oligo-

type from July to November matched the tropical phylotype

P1a.3. The emergence of the dominant tropical-like oligotype

lags the increased temperature shift (Fig. 3a) similar to that

reported for shifts in archaeal and protistan networks in other

marine environments (Steele et al. 2011;Gilbert et al. 2012).

Discussion

We analysed two separate data sets to demonstrate the capac-

ity of oligotyping to discriminate distinct microbial popula-

tions of ecological importance. Oligotyping analysis of

Illumina and 454 amplicon sequences for Bacteroides from the

human gastrointestinal tract, and Pelagibacter from Little Sip-

pewissett Marsh, respectively, facilitated the recovery of eco-

logical information that taxonomical classification and OTU

clustering at 97% identity level cannot detect.

Bacteroides account for a major fraction of the human

microbiome (Ley, Peterson &Gordon 2006) and represent one

of themost diverse genera in the gastrointestinal tract (Arumu-

gam et al. 2011). Our oligotyping analysis revealed that the rel-

ative abundance or simple presence–absence patterns of

amplicon sequences that differ from each other by only two

nucleotides in the V4 region show remarkable geographical

specificity (Fig. 2). Why an organism that is present in the vast

majority of samples from rural communities is virtually absent

from the US population poses an important question that can-

not be answered through the analysis of reads from the 16S

rRNA gene alone. However, such questions may emerge from

observations ofmicrobial diversity at very fine scales and could

easily be overlooked using standard binning methods. We also

used LEfSe (Segata et al. 2011) to investigate whether oligo-

typing recovered information that separates different environ-

ments more efficiently compared to OTU clustering. Among

theOTUs and oligotypes identified inBacteroides reads, LEfSe

detected more biomarkers for region-specific oligotypes than

OTUs for the samples collected from the United States. More

discriminants may be due to the fact that the analysis of Bacte-

roides reads resulted in more oligotypes (385) than OTUs

(246). However, the mean effect size of oligotypes was larger in

four out of five categories as well [significantly higher in three

out of five categories (P < 0�05)] (Fig. S3), suggesting that oli-
gotyping results were comparable or better than clustering

analysis at explaining the structure of theBacteroides data set.

SAR11 dominates aerobic bacterial phylotypes in the

oceans (Morris et al. 2002). This group includes Pelagibacter

ubique, which through its abundance and photoheterotrophic

metabolism plays a critical role in the carbon cycle. Only few

isolates are available due to the challenging cultivation proce-

dures (Connon & Giovannoni 2002; Rappe et al. 2002; Stingl,

Tripp&Giovannoni 2007; Carini et al. 2013); hence, the depth

of taxonomic classification for proper identification of differ-

ent SAR11 organisms in environmental samples is limited.

Oligotyping of the large number of Pelagibacter reads from

samples collected over an eighteen-month time frame from

LSMdemonstrated remarkable seasonal variation in the abun-

dance of closely related Pelagibacter organisms (Fig. 3). The

most abundant two oligotypes that together comprised more

than half of the Pelagibacter population in the samples analy-

sed were more than 99�5% similar to each other over the

sequenced region, yet their relative abundance exhibits

statistically significant negative association throughout the

Fig. 3. Pelagibacter oligotype andOTU distribution in samples from Little SippewissettMarsh. In panel (a), seasonal variation of twoPelagibacter

oligotypes is shown based on their relative abundance. The representative sequence of Oligotype 1 is identical to HTCC1062 (predominant in polar

regions) through the V4-V6 region, and the representative sequence of Oligotype 2 is identical to HTCC7211 (more abundant in tropical regions) at

the V4-V6 region. These oligotypes are 99�57% identical to each other over their 459 nt amplicon lengths. The water temperature observed during

the sampling is superimposed on the figure. In panel (b), the distribution of Pelagibacter oligotypes and 3% OTUs across all sampling stations is

compared side by side. Data from each station consisted of temporal samples spanning a 17-month time period betweenMay 2007 and September

2008. Each colour represents a different oligotype andOTU. Colour range order is defined by the relative abundance; therefore, identical colours do

not suggest any correlation across panels.
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changing seasons (Kendall’s rank correlation tau: �1;

P < 0�001) (Fig. 3a). Since the levels of sequence similarity

betweenmostPelagibacter organisms were beyond the de facto

97% threshold, we did not detect the seasonal phenomenon

analysing the same data set with OTU clustering (Fig. 3b).

Oligotyping of high-throughput sequencing data identified

(a)

(b)
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very closely related organisms occupying ecological niches

separated by season andwarranting further study.

The final operational units of taxonomic classification or

clustering methods provide the initial input for oligotyping

analyses. Therefore, this technique works with existing com-

mon methodologies and offers an analytical technology that

allows researchers to investigate diversity within the specific

taxa or OTUs rather than a method to be applied to the entire

data set. As was the case with Pelagibacter in LSM, the steady

presence of an operational unit may simply reflect unexplained

diversity concealed in an OTU that can only be further

explored through with oligotyping. This makes oligotyping

most rewarding when it is applied to reads with the same taxo-

nomic assignments or OTUs that occur in all samples in a data

set despite the changing environmental parameters.

The user guidance that oligotyping requires does not end

with selecting the operational unit upon which to focus. The

user must also consider which nucleotide positions will explain

the diversity most effectively in any group of reads. This step

starts with identifying variable positions following the entropy

analysis and usually requires oligotyping to be repeated with

an increasing number of nucleotide positions until each oligo-

type converges (with little or no entropy left in the group), or

until the user accepts the level of resolution. Having no fixed

similarity threshold in any step of the analysis has the advan-

tage of making oligotyping more suitable for explaining vary-

ing degrees of diversity. However, it has the disadvantage of

requiring the investigator to supervise the optimal solution for

a given group of reads. Therefore, our oligotyping pipeline

offers a user-friendly interface to facilitate the necessary steps

of supervision (seeMaterials andMethods).

In summary, oligotyping is a supervised computational

method to investigate and reveal microbial diversity con-

cealed within final operational units of canonical approaches.

It relies on the position-specific information in high-through-

put reads obtained from 16S rRNA gene amplicons to exploit

subtle nucleotide variations for identification of closely

related but distinct taxa. By focusing only on the variable

sites among reads that contain the most discriminating infor-

mation, oligotyping can reveal previously unobserved ecologi-

cal patterns in a data set by identifying highly refined

operational units to elaborate differences among high-

throughput sequencing reads. The open-source software pipe-

line for oligotyping, user tutorials and example analyses are

available from http://oligotyping.org.
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