199 research outputs found

    Effects of Intra- and Interpatch Host Density on Egg Parasitism by Three Species of Trichogramma

    Get PDF
    Host-foraging responses to different intra- and interpatch densities were used to assess three Trichogramma spp. (Hymenoptera: Trichogrammatidae) Trichogramma deion Pinto and Oatman, T. ostriniae Pang and Chen, and T. pretiosum Riley — as potential biological control agents for the Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Single naïve females were allowed 6 h to forage in Plexiglas arenas with four different spatial arrangements of host eggs, nine single-egg patches), nine four-egg patches, 36 single-egg patches, and 36 four-egg patches. No significant differences were found among species in the number of patches parasitized. As expected, all three species parasitized the most eggs in the 36 four-egg patch treatment and the least in the nine single-egg patch treatment. T. deion parasitized significantly more eggs than T. pretiosum on the nine four-egg patches. T. ostriniae parasitized significantly more patches when intrapatch density was greater, regardless of interpatch density. In contrast, T. deion only parasitized more patches at the greater intrapatch density when the interpatch density was low. Patch density had no effect on T. pretiosum. The spatial pattern of parasitism was more aggregated for T. deion and T. ostriniae in the 36 four-egg patches treatment compared to the 36 single-egg patches treatment. Therefore, intrapatch density was more important than interpatch density for T. ostriniae, and potentially for T. deion, but not for T. pretiosum. T. deion may be the best candidate for augmentative biological control because it parasitized either slightly or significantly more eggs than the other two species in all four treatments. Furthermore, the pattern of parasitism by T. deion in the 36 four-egg patches treatment was the most aggregated among the three species, suggesting a more thorough searching pattern. In contrast, T. pretiosum had the least aggregated pattern of parasitism and therefore may have used a more random foraging pattern

    Effect of Gestational Folic Acid Supplementation on Offspring Immune Organ Development and Postnatal Immune Response

    Get PDF
    Pairs of littermate, primiparous sows were fed a low folic acid, basal diet for 98 days to minimize body folic acid (FA) stores. Following the depletion period, sows were synchronized and bred via artificial insemination. Feeding of experimental diets was initiated on day 1 post-breeding and was continued throughout pregnancy. Experimental diets consisted of the low folic acid, basal diet supplemented with either 0 or 8 mg of FA per sow per day. The FA supplementation elevated sow serum FA concentration during pregnancy but did not alter immunoglobulin concentration in sow serum, piglet serum nor sow colostral whey at parturition. The FA supplementation did not affect the number of pigs per litter nor litter birth weight. The FA supplementation of the gravid sow did not alter piglet thymus or spleen weight, DNA, or protein content at birth, but resulted in a lower (

    Natural zeolite (chabazite/phillipsite) dietary supplementation influences faecal microbiota and oxidant status of working dogs

    Get PDF
    We evaluated whether chabazite/phillipsite dietary supplementation might affect the faecal microbiota, oxidant and antioxidant status of working dogs at rest undergone to a trial test. Forty English Setter dogs were involved in two replicate trials. At each replicate, dogs were divided into two homogeneous groups (10 dogs/group). During a period of 28 days, diet was supplemented (Z group) or not supplemented (C group) with chabazite/phillipsite at the dose of 5 g/head/day. On day 29, dogs were subjected to a trial test. Faecal characteristics were assessed at 0 and 29 days (within two hours from the end of the trial test). Faecal consistency was not affected by dietary supplementation (p > .05). On day 29, Lactobacillus spp. and Enterococcus spp. counts were higher and Enterobacteriaceae were lower in Z than in C group (p  .05). Our results suggest that chabazite/phillipsite dietary supplementation, improves the intestinal microbiota ecosystem and may counteract the oxidative damage caused by physical stress in hunting dogs at the beginning of the working season

    Lysine/RNA-interactions drive and regulate biomolecular condensation.

    Get PDF
    Cells form and use biomolecular condensates to execute biochemical reactions. The molecular properties of non-membrane-bound condensates are directly connected to the amino acid content of disordered protein regions. Lysine plays an important role in cellular function, but little is known about its role in biomolecular condensation. Here we show that protein disorder is abundant in protein/RNA granules and lysine is enriched in disordered regions of proteins in P-bodies compared to the entire human disordered proteome. Lysine-rich polypeptides phase separate into lysine/RNA-coacervates that are more dynamic and differ at the molecular level from arginine/RNA-coacervates. Consistent with the ability of lysine to drive phase separation, lysine-rich variants of the Alzheimer's disease-linked protein tau undergo coacervation with RNA in vitro and bind to stress granules in cells. Acetylation of lysine reverses liquid-liquid phase separation and reduces colocalization of tau with stress granules. Our study establishes lysine as an important regulator of cellular condensation

    Vapor−Wall Deposition in Chambers: Theoretical Considerations

    Get PDF
    In order to constrain the effects of vapor–wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, researchers recently varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area (Zhang, X.; et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 5802). Using a coupled vapor–particle dynamics model, we examine the extent to which this increase is the result of vapor–wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic time scales of gas-phase reaction, vapor–wall deposition, and gas–particle equilibration. The gas–particle equilibration time scale depends on the gas–particle accommodation coefficient α_p. Regardless of the extent of kinetic limitation, vapor–wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor–wall deposition and kinetic limitations must be taken into account

    Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review

    Get PDF
    Organic species are an important but poorly characterized constituent of airborne particulate matter. A quantitative understanding of the organic fraction of particles (organic aerosol, OA) is necessary to reduce some of the largest uncertainties that confound the assessment of the radiative forcing of climate and air quality management policies. In recent years, aerosol mass spectrometry has been increasingly relied upon for highly time-resolved characterization of OA chemistry and for elucidation of aerosol sources and lifecycle processes. Aerodyne aerosol mass spectrometers (AMS) are particularly widely used, because of their ability to quantitatively characterize the size-resolved composition of submicron particles (PM1). AMS report the bulk composition and temporal variations of OA in the form of ensemble mass spectra (MS) acquired over short time intervals. Because each MS represents the linear superposition of the spectra of individual components weighed by their concentrations, multivariate factor analysis of the MS matrix has proved effective at retrieving OA factors that offer a quantitative and simplified description of the thousands of individual organic species. The sum of the factors accounts for nearly 100% of the OA mass and each individual factor typically corresponds to a large group of OA constituents with similar chemical composition and temporal behavior that are characteristic of different sources and/or atmospheric processes. The application of this technique in aerosol mass spectrometry has grown rapidly in the last six years. Here we review multivariate factor analysis techniques applied to AMS and other aerosol mass spectrometers, and summarize key findings from field observations. Results that provide valuable information about aerosol sources and, in particular, secondary OA evolution on regional and global scales are highlighted. Advanced methods, for example a-priori constraints on factor mass spectra and the application of factor analysis to combined aerosol and gas phase data are discussed. Integrated analysis of worldwide OA factors is used to present a holistic regional and global description of OA. Finally, different ways in which OA factors can constrain global and regional models are discussed
    corecore