511 research outputs found
Rheology and Contact Lifetime Distribution in Dense Granular Flows
We study the rheology and distribution of interparticle contact lifetimes for
gravity-driven, dense granular flows of non-cohesive particles down an inclined
plane using large-scale, three dimensional, granular dynamics simulations.
Rather than observing a large number of long-lived contacts as might be
expected for dense flows, brief binary collisions predominate. In the hard
particle limit, the rheology conforms to Bagnold scaling, where the shear
stress is quadratic in the strain rate. As the particles are made softer,
however, we find significant deviations from Bagnold rheology; the material
flows more like a viscous fluid. We attribute this change in the collective
rheology of the material to subtle changes in the contact lifetime distribution
involving the increasing lifetime and number of the long-lived contacts in the
softer particle systems.Comment: 4 page
Structure of bottle-brush brushes under good solvent conditions. A molecular dynamics study
We report a simulation study for bottle-brush polymers grafted on a rigid
backbone. Using a standard coarse-grained bead-spring model extensive molecular
dynamics simulations for such macromolecules under good solvent conditions are
performed. We consider a broad range of parameters and present numerical
results for the monomer density profile, density of the untethered ends of the
grafted flexible backbones and the correlation function describing the range
that neighboring grafted bottle-brushes are affected by the presence of the
others due to the excluded volume interactions. The end beads of the flexible
backbones of the grafted bottle-brushes do not access the region close to the
rigid backbone due to the presence of the side chains of the grafted
bottle-brush polymers, which stretch further the chains in the radial
directions. Although a number of different correlation lengths exist as a
result of the complex structure of these macromolecules, their properties can
be tuned with high accuracy in good solvents. Moreover, qualitative differences
with "typical" bottle-brushes are discussed. Our results provide a first
approach to characterizing such complex macromolecules with a standard bead
spring model.Comment: To appear in Journal of Physics Condensed Matter (2011
Static and dynamic properties of the interface between a polymer brush and a melt of identical chains
Molecular dynamics simulations of a short-chain polymer melt between two
brush-covered surfaces under shear have been performed. The end-grafted
polymers which constitute the brush have the same chemical properties as the
free chains in the melt and provide a soft deformable substrate. Polymer chains
are described by a coarse-grained bead-spring model with Lennard-Jones
interactions between the beads and a FENE potential between nearest neighbors
along the backbone of the chains. The grafting density of the brush layer
offers a way of controlling the behavior of the surface without altering the
molecular interactions. We perform equilibrium and non-equilibrium Molecular
Dynamics simulations at constant temperature and volume using the Dissipative
Particle Dynamics thermostat. The equilibrium density profiles and the behavior
under shear are studied as well as the interdigitation of the melt into the
brush, the orientation on different length scales (bond vectors, radius of
gyration, and end-to-end vector) of free and grafted chains, and velocity
profiles. The viscosity and slippage at the interface are calculated as
functions of grafting density and shear velocity.Comment: 12 pages, submitted to J Chem Phy
Stresses in Smooth Flows of Dense Granular Media
The form of the stress tensor is investigated in smooth, dense granular flows
which are generated in split-bottom shear geometries. We find that, within a
fluctuation fluidized spatial region, the form of the stress tensor is directly
dictated by the flow field: The stress and strain-rate tensors are co-linear.
The effective friction, defined as the ratio between shear and normal stresses
acting on a shearing plane, is found not to be constant but to vary throughout
the flowing zone. This variation can not be explained by inertial effects, but
appears to be set by the local geometry of the flow field. This is in agreement
with a recent prediction, but in contrast with most models for slow grain
flows, and points to there being a subtle mechanism that selects the flow
profiles.Comment: 5 pages, 4 figure
Rheology of Ring Polymer Melts: From Linear Contaminants to Ring/Linear Blends
Ring polymers remain a major challenge to our current understanding of
polymer dynamics. Experimental results are difficult to interpret because of
the uncertainty in the purity and dispersity of the sample. Using both
equilibrium and non-equilibrium molecular dynamics simulations we have
systematically investigated the structure, dynamics and rheology of perfectly
controlled ring/linear polymer blends with chains of such length and
flexibility that the number of entanglements is up to about 14 per chain, which
is comparable to experimental systems examined in the literature. The smallest
concentration at which linear contaminants increase the zero-shear viscosity of
a ring polymer melt of these chain lengths by 10% is approximately one-fifth of
their overlap concentration. When the two architectures are present in equal
amounts the viscosity of the blend is approximately twice as large as that of
the pure linear melt. At this concentration the diffusion coefficient of the
rings is found to decrease dramatically, while the static and dynamic
properties of the linear polymers are mostly unaffected. Our results are
supported by a primitive path analysis.Comment: 5 pages, 4 figures, accepted by PR
A New Phase of Tethered Membranes: Tubules
We show that fluctuating tethered membranes with {\it any} intrinsic
anisotropy unavoidably exhibit a new phase between the previously predicted
``flat'' and ``crumpled'' phases, in high spatial dimensions where the
crumpled phase exists. In this new "tubule" phase, the membrane is crumpled in
one direction but extended nearly straight in the other. Its average thickness
is with the intrinsic size of the membrane. This phase
is more likely to persist down to than the crumpled phase. In Flory
theory, the universal exponent , which we conjecture is an exact
result. We study the elasticity and fluctuations of the tubule state, and the
transitions into it.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with
figures already inside text; unpacking instructions are at the top of file.
To appear in Phys. Rev. Lett. November (1995
Effective interactions between star polymers and colloidal particles
Using monomer-resolved Molecular Dynamics simulations and theoretical
arguments based on the radial dependence of the osmotic pressure in the
interior of a star, we systematically investigate the effective interactions
between hard, colloidal particles and star polymers in a good solvent. The
relevant parameters are the size ratio q between the stars and the colloids, as
well as the number of polymeric arms f (functionality) attached to the common
center of the star. By covering a wide range of q's ranging from zero (star
against a flat wall) up to about 0.75, we establish analytical forms for the
star-colloid interaction which are in excellent agreement with simulation
results. A modified expression for the star-star interaction for low
functionalities, f < 10 is also introduced.Comment: 37 pages, 14 figures, preprint-versio
Cluster pair correlation function of simple fluids: energetic connectivity criteria
We consider the clustering of Lennard-Jones particles by using an energetic
connectivity criterion proposed long ago by T.L. Hill [J. Chem. Phys. 32, 617
(1955)] for the bond between pairs of particles. The criterion establishes that
two particles are bonded (directly connected) if their relative kinetic energy
is less than minus their relative potential energy. Thus, in general, it
depends on the direction as well as on the magnitude of the velocities and
positions of the particles. An integral equation for the pair connectedness
function, proposed by two of the authors [Phys Rev. E 61, R6067 (2000)], is
solved for this criterion and the results are compared with those obtained from
molecular dynamics simulations and from a connectedness Percus-Yevick like
integral equation for a velocity-averaged version of Hill's energetic
criterion.Comment: 17 pages, 6 figure
What is the Entanglement Length in a Polymer Melt ?
We present results of molecular dynamics simulations of very long model
polymer chains analyzed by various experimentally relevant techniques. The
segment motion of the chains is found to be in very good agreement with the
repatation model. We also calculated the plateau-modulus G_N. The predicitions
of the entanglement length N_e from G_N and from the mean square displacements
of the chains segments disagree by a factor of about 2.2(2), indicating an
error in the prefactor in the standard formula for G_N. We show that recent
neutron spin echo measurements were carried out for chain lengths which are too
small for a correct determination of N_e.Comment: 5 pages, 4 figures, RevTe
- …