47 research outputs found
Fluorescence-Activated Cell Sorting and Quantitative Real-Time PCR to Reveal VEGF-Expressing Macrophage Populations in the Zebrafish Larvae
The transparent, genetically tractable zebrafish is increasingly recognized as a useful model to both live image and uncover mechanistic insight into cell interactions governing tissue homeostasis, pathology, and regeneration. Here, we describe a protocol for the isolation of macrophages from zebrafish wounds using fluorescence-activated cell sorting (FACS), and the identification of specific pro-angiogenic macrophage populations that express high levels of vascular endothelial growth factor (vegf) using quantitative real-time PCR (qPCR). The cell dissociation and FACS sorting techniques have been optimized for immune cells and successfully used to isolate other fluorescently marked populations within the wound such as neutrophils and endothelial cells. More broadly, this protocol can be easily adapted to other contexts where identification of pro-angiogenic immune cells is transformative for understanding, from development to pathologies such as infection, cancer, and diabetes.</p
Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression
© 2018 The Authors. Published under the terms of the CC BY 4.0 license Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and invivo. Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis.Macrophages also positively influence wound angiogenesis by driving resolution of anti-angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor-α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance
Alternative propulsor for mobile transportation and technological machines wood complex
Лесные машины, оборудованные альтернативным движителем, способны передвигаться по любым типам поверхностей (подготовленным дорогам, пахоте, болоту, песку, заснеженной местности и т.д.) с минимальным негативным воздействием.Forestry machines equipped alternative propulsors are capable to move on any types of land surfaces (the prepared roads, plowed land, bog, the sand, snow-covered land and etc.) with the minimal negative influence
A Wnt-BMP4 signaling axis induces MSX and NOTCH proteins and promotes growth suppression and differentiation in neuroblastoma
The Wnt and bone morphogenetic protein (BMP) signaling pathways are known to be crucial in the development of neural crest lineages, including the sympathetic nervous system. Surprisingly, their role in paediatric neuroblastoma, the prototypic tumor arising from this lineage, remains relatively uncharacterised. We previously demonstrated that Wnt/β-catenin signaling can have cell-type-specific effects on neuroblastoma phenotypes, including growth inhibition and differentiation, and that BMP4 mRNA and protein were induced by Wnt3a/Rspo2. In this study, we characterised the phenotypic effects of BMP4 on neuroblastoma cells, demonstrating convergent induction of MSX homeobox transcription factors by Wnt and BMP4 signaling and BMP4-induced growth suppression and differentiation. An immunohistochemical analysis of BMP4 expression in primary neuroblastomas confirms a striking absence of BMP4 in poorly differentiated tumors, in contrast to a high expression in ganglion cells. These results are consistent with a tumor suppressive role for BMP4 in neuroblastoma. RNA sequencing following BMP4 treatment revealed induction of Notch signaling, verified by increases of Notch3 and Hes1 proteins. Together, our data demonstrate, for the first time, Wnt-BMP-Notch signaling crosstalk associated with growth suppression of neuroblastoma
Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis
© 2018 The Authors. Published under the terms of the CC BY 4.0 license Hypoxia is a hallmark of solid tumours and a key physiological feature distinguishing cancer from normal tissue. However, a major challenge remains in identifying tractable molecular targets that hypoxic cancer cells depend on for survival. Here, we used SILAC-based proteomics to identify the orphan G protein-coupled receptor GPRC5A as a novel hypoxia-induced protein that functions to protect cancer cells from apoptosis during oxygen deprivation. Using genetic approaches invitro and invivo, we reveal HIFs as direct activators of GPRC5A transcription. Furthermore, we find that GPRC5A is upregulated in the colonic epithelium of patients with mesenteric ischaemia, and in colorectal cancers high GPRC5A correlates with hypoxia gene signatures and poor clinical outcomes. Mechanistically, we show that GPRC5A enables hypoxic cell survival by activating the Hippo pathway effector YAP and its anti-apoptotic target gene BCL2L1. Importantly, we show that the apoptosis induced by GPRC5A depletion in hypoxia can be rescued by constitutively active YAP. Our study identifies a novel HIF-GPRC5A-YAP axis as a critical mediator of the hypoxia-induced adaptive response and a potential target for cancer therapy
Transcriptomic analyses of MYCN-regulated genes in anaplastic Wilms' tumour cell lines reveals oncogenic pathways and potential therapeutic vulnerabilities
The MYCN proto-oncogene is deregulated in many cancers, most notably in neuroblastoma, where MYCN gene amplification identifies a clinical subset with very poor prognosis. Gene expression and DNA analyses have also demonstrated overexpression of MYCN mRNA, as well as focal amplifications, copy number gains and presumptive change of function mutations of MYCN in Wilms’ tumours with poorer outcomes, including tumours with diffuse anaplasia. Surprisingly, however, the expression and functions of the MYCN protein in Wilms’ tumours still remain obscure. In this study, we assessed MYCN protein expression in primary Wilms’ tumours using immunohistochemistry of tissue microarrays. We found MYCN protein to be expressed in tumour blastemal cells, and absent in stromal and epithelial components. For functional studies, we used two anaplastic Wilms’ tumour cell-lines, WiT49 and 17.94, to study the biological and transcriptomic effects of MYCN depletion. We found that MYCN knockdown consistently led to growth suppression but not cell death. RNA sequencing identified 561 MYCN-regulated genes shared by WiT49 and 17.94 cell-lines. As expected, numerous cellular processes were downstream of MYCN. MYCN positively regulated the miRNA regulator and known Wilms’ tumour oncogene LIN28B, the genes encoding methylosome proteins PRMT1, PRMT5 and WDR77, and the mitochondrial translocase genes TOMM20 and TIMM50. MYCN repressed genes including the developmental signalling receptor ROBO1 and the stromal marker COL1A1. Importantly, we found that MYCN also repressed the presumptive Wilms’ tumour suppressor gene REST, with MYCN knockdown resulting in increased REST protein and concomitant repression of RE1-Silencing Transcription factor (REST) target genes. Together, our study identifies regulatory axes that interact with MYCN, providing novel pathways for potential targeted therapeutics for poor-prognosis Wilms’ tumour
LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells
Canonical Wnt/β-catenin signaling is frequently dysregulated in myeloid leukemias and is implicated in leukemogenesis. Nuclear-localized β-catenin is indicative of active Wnt signaling and is frequently observed in acute myeloid leukemia patients; however, some patients exhibit little or no nuclear β-catenin even where cytosolic β-catenin is abundant. Control of the subcellular localization of β-catenin therefore represents an additional mechanism regulating Wnt signaling in hematopoietic cells. To investigate the factors mediating the nuclear-localization of β-catenin we carried out the first nuclear/cytoplasmic proteomic analysis of the β-catenin interactome in myeloid leukemia cells and identified putative novel β-catenin interactors. Comparison of interacting factors between Wnt-responsive cells (high nuclear β-catenin) versus Wnt-unresponsive cells (low nuclear β-catenin) suggested the transcriptional partner, LEF-1, could direct the nuclear-localization of β-catenin. The relative levels of nuclear LEF-1 and β-catenin were tightly correlated in both cell lines and in primary AML blasts. Furthermore, LEF-1 knockdown perturbed β-catenin nuclear-localization and transcriptional activation in Wnt-responsive cells. Conversely, LEF-1 overexpression was able to promote both nuclear-localization and β-catenin-dependent transcriptional responses in previously Wnt-unresponsive cells. This is the first β-catenin interactome study in hematopoietic cells and reveals LEF-1 as a mediator of nuclear β-catenin level human myeloid leukemia
Correction: LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma
A Correction on:
LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma
Gabriella Cunha Vieira, S. Chockalingam, Zsombor Melegh, Alexander Greenhough, Sally Malik, Marianna Szemes, Ji Hyun Park, Abderrahmane Kaidi, Li Zhou, Daniel Catchpoole, Rhys Morgan, David O. Bates, Peter J. Gabb and Karim Malik
Original article: Oncotarget. 2015; 6:40053-67. DOI: 10.18632/oncotarget.5548.
The originally Figure 5 contains duplicate total-ERK panels.
The proper Figure 5 is attached. The authors sincerely apologize for this error
Anticancer effects of the Novel Pyrazolyl-Urea GeGe-3
In a screen of over 200 novel pyrazole compounds, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl)ureido)-1H-pyrazole-4-carboxylate (named GeGe-3) has emerged as a potential anticancer compound. GeGe-3 displays potent anti-angiogenic properties through the presumptive targeting of the protein kinase DMPK1 and the Ca2+-binding protein calreticulin. We furtherexplored the anticancer potential of GeGe-3 on a range of established cancer cell lines, including PC3(prostate adenocarcinoma), SKMEL-28 (cutaneous melanoma), SKOV-3 (ovarian adenocarcinoma),Hep-G2 (hepatocellular carcinoma), MDA-MB231, SKBR3, MCF7 (breast adenocarcinoma), A549(lung carcinoma), and HeLa (cervix epithelioid carcinoma). At concentrations in the range of 10 µM,GeGe-3 significantly restricted cell proliferation and metabolism. GeGe-3 also reduced PC3 cellmigration in a standard wound closure and trans-well assay. Together, these results confirm theanticancer potential of GeGe-3 and underline the need for more detailed pre-clinical investigationsinto its molecular targets and mechanisms of action
Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk
The Wnt/β-catenin signalling and autophagy pathways each play important roles during development, adult tissue homeostasis and tumorigenesis. Here we identify the Wnt/β-catenin signalling pathway as a negative regulator of both basal and stress-induced autophagy. Manipulation of β-catenin expression levels in vitro and in vivo revealed that β-catenin suppresses autophagosome formation and directly represses p62/SQSTM1 (encoding the autophagy adaptor p62) via TCF4. Furthermore, we show that during nutrient deprivation β-catenin is selectively degraded via the formation of a β-catenin-LC3 complex, attenuating β-catenin/TCF-driven transcription and proliferation to favour adaptation during metabolic stress. Formation of the β-catenin-LC3 complex is mediated by a W/YXXI/L motif and LC3-interacting region (LIR) in β-catenin, which is required for interaction with LC3 and non-proteasomal degradation of β-catenin. Thus, Wnt/β-catenin represses autophagy and p62 expression, while β-catenin is itself targeted for autophagic clearance in autolysosomes upon autophagy induction. These findings reveal a regulatory feedback mechanism that place β-catenin at a key cellular integration point coordinating proliferation with autophagy, with implications for targeting these pathways for cancer therapy. © 2013 European Molecular Biology Organization