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Abstract: The Wnt and bone morphogenetic protein (BMP) signaling pathways are known to be
crucial in the development of neural crest lineages, including the sympathetic nervous system.
Surprisingly, their role in paediatric neuroblastoma, the prototypic tumor arising from this lineage,
remains relatively uncharacterised. We previously demonstrated that Wnt/3-catenin signaling
can have cell-type-specific effects on neuroblastoma phenotypes, including growth inhibition and
differentiation, and that BMP4 mRNA and protein were induced by Wnt3a/Rspo2. In this study, we
characterised the phenotypic effects of BMP4 on neuroblastoma cells, demonstrating convergent
induction of MSX homeobox transcription factors by Wnt and BMP4 signaling and BMP4-induced
growth suppression and differentiation. An immunohistochemical analysis of BMP4 expression
in primary neuroblastomas confirms a striking absence of BMP4 in poorly differentiated tumors,
in contrast to a high expression in ganglion cells. These results are consistent with a tumor
suppressive role for BMP4 in neuroblastoma. RNA sequencing following BMP4 treatment revealed
induction of Notch signaling, verified by increases of Notch3 and Hesl proteins. Together, our
data demonstrate, for the first time, Wnt-BMP-Notch signaling crosstalk associated with growth
suppression of neuroblastoma.
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1. Introduction

The canonical Wnt signaling pathway is a critical regulator of differentiation, proliferation,
stemness, and determination of cell fate. Deregulation of Wnt signaling contributes to many cancers,
resulting from both activating mutations of the proto-oncogene CTNNB1 (encoding 3-catenin), and
loss of function mutations in negative regulators of the pathway, such as APC (encoding Adenomatous
Polyposis Coli). These changes result in elevated nuclear 3-catenin, which acts a co-activator for
TCF/LEF transcription factors and a pro-growth/survival gene expression programme, exemplified by
transcriptional activation of oncogenes such as MYC and CCND1 [1,2]. Wnt signaling in cancer can
display extensive crosstalk with other morphogenetic pathways such as bone morphogenetic protein
(BMP) and Notch signaling [3].
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Given the developmental origins of the childhood cancer neuroblastoma, it was reasonable
to examine whether deregulated Wnt signaling might be one of its central oncogenic drivers.
Neuroblastoma is derived from the sympathoadrenal lineage of the neural crest [4,5], and neural
crest cell (NCC) fates are contingent on tightly regulated orchestration of many signaling pathways
prompting neural crest induction and specification, including Wnt/3-catenin [6,7] and BMP signaling [8].
Additionally, a well characterized differentiation block of NCCs, resulting in neuroblastoma, depends
on MYCN amplification and over-expression [9], with MYCN transcriptionally repressing genes
required for sympathetic nervous system differentiation [10,11]. In other developmental contexts,
MYCN is known to be a Wnt-induced gene [12], circumstantially supporting the possible oncogenicity
of Wnt signaling in neuroblastoma.

Our previous work demonstrated high-levels of the Leucine Rich Repeat Containing G
Protein-Coupled Receptor 5 (LGR5) mRNA and protein in undifferentiated neuroblastomas and
neuroblastoma cell-lines and that LGR5 was also an upstream regulator of Mitogen-Activated Protein
Kinase (MAPK) signaling in neuroblastoma [13]. LGR5 canonically functions as an R-Spondin receptor
and increases Wnt/3-catenin signaling amplitude [14]. However, we found that Wnt3a/Rspo2 treatment
of neuroblastoma cell-lines did not lead to the induction of MYCN, in fact MYCN and MYC protein
levels decreased with Wnt3a/Rspo2 treatment, in contrast to previous reports suggesting induction of
MYCinnon-MYCN amplified (non-MNA) neuroblastomas due to Wnt/f-catenin signaling [15]. Further
phenotypic analysis of Wnt3a/Rspo2 treated neuroblastoma cell-lines revealed that Wnt/[3-catenin
signaling exerted context-dependent effects, including the growth suppression and differentiation
evident in SK-N-BE(2)-C and SH-SY5Y cells. In order to understand the Wnt-induced phenotypic
changes, we conducted RNA sequencing and identified 90 high-confidence Wnt/3-catenin signaling
target genes in SK-N-BE(2)-C cells. A bioinformatic analysis of these neuroblastoma Wnt target genes
in primary tumor datasets showed that the 90 genes contained four distinct Wnt gene modules, or
metagenes, the expression of which correlated with prognosis. Wnt metagenes 1 and 2, containing
approximately 56% of our neuroblastoma Wnt target genes were expressed at markedly lower
levels in high-risk neuroblastomas suggesting that these genes likely encode growth-suppressive
and/or pro-differentiation proteins [16]. Consistently with this idea, some genes with documented
tumor-suppressive roles in neuroblastoma were included in these Wnt modules. These include
EPAST [17] and MSX1 [18], both of which have been shown to inhibit neuroblastoma cell growth.
Further analysis of our Wnt differentially expressed genes (DEGs) suggested that Wnt signaling is
also a key regulator of mesenchymal and adrenergic differentiation states [19] which contribute to
neuroblastoma cellular heterogeneity in both cell-lines and primary tumors [20,21].

One of our most highly Wnt-induced genes following Wnt induction was BMP4. Previous
studies have alluded to a role for BMPs in neuroblastoma growth and differentiation, including
BMP2 in mouse neuroblastoma and SH-SY5Y cells [22,23] and BMP4, which also affected SH-SY5Y
differentiation and decreased proliferation markers [24]. However, the mechanisms and signaling
crosstalk involved in BMP-mediated phenotypes and the significance to primary disease of BMPs
is not known. Given the interplay of Wnt and BMP signaling in neural crest development [25,26]
and in many cancers [27-29], we hypothesised that the Wnt-BMP pathway may be key in regulating
neuroblastoma growth. Specifically, although BMPs can have context-dependent roles in cancer, either
promoting or inhibiting growth [30], Wnt-BMP signaling may be at the core of a growth-restrictive
module in neuroblastoma, possibly via convergence on MSX transcription factors, which are known to
be downstream of BMPs in neural crest specification [31] and also inhibit the growth of neuroblastoma
cells [18].

In this study, we examined the relationship between Wnt and BMP signaling in neuroblastoma
using functional assays and next-generation sequencing. Our study establishes co-ordinate signaling
pathways operational in neuroblastoma which may be exploited for prognosis and therapeutics.
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2. Materials and Methods

2.1. Neuroblastoma Cell Lines and Culture Conditions

Neuroblastoma cell lines were purchased from the European Collection of Authenticated Cell
Cultures (ECACC) and from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ).
The identity of SK-N-BE(2)-C, SH-SY5Y and IMR32 cell lines was verified by using STR profiling
(Eurofins) and lack of Mycoplasma infection was confirmed by a Mycoalert Mycoplasma Detection
Kit (Lonza). Cell lines were cultured in Dulbecco’s modified eagle’s medium (DMEM):F12-HAM
(Sigma) supplemented with 10% (v/v) foetal bovine serum (FBS) (Life technologies), 2 mM L-glutamine,
100 U/mL penicillin, 0.1 mg/mL streptomycin, and 1% (v/v) non-essential amino acids. BMP4 (R&D
Systems) treatment was carried out at low serum conditions (1-5% FBS) in the same growth media.

2.2. Incucyte Live Cell Imaging and Cell Cycle Analysis

Cell proliferation was monitored real time by using Incucyte Live Cell Imaging system using
cell confluence as surrogate for growth, according to the manufacturer’s instructions. Briefly, cell
confluence was measured in triplicate or quadruplicate wells, normalized for starting confluence, and
the average normalized confluence was plotted in function of time. The statistical significance of
normalized confluence between treated and control wells was assessed by using T tests for each time
point. For the analysis of neuritogenesis, a digital mask was created from training image sets to enable
the software to correctly recognize neurites. Neurite lengths were recorded per mm?
wells, normalized to initial values and assessed for significance using T tests.

Propidium-iodide labelling and fluorescence activated cell sorting (FACS) analysis to detect cell
cycle phases was performed as previously described [32]. Briefly, floating and adherent cells were
collected, washed with PBS and subsequently fixed with ice cold 70% (v/v) ethanol. After washing with
PBS, the cells were treated with RNase A (Qiagen). After adding 50 pg/mL Propidium Iodide (Sigma),
the samples were incubated at 37 °C for 15 minutes and analysed using Fluorescence Activated Cell
Sorter LSRFortessa™ X-20 (BD Biosciences). At least 15,000 events were collected for every replicate.
The data obtained were analyzed using Flow]Jo software.

area in replicate

2.3. Protein Extraction and Western blot

Cells were lysed in Radioimmunoprecipitation assay (RIPA) buffer and protein concentration
was determined by using a Micro BCA TM protein assay kit (Thermo Fisher). Ten to twenty-five ug
protein was loaded onto 8-10% SDS poly-acrylamide gels and run in 1x Tris-glycine SDS buffer. The
proteins were transferred onto PVDF membrane (Millipore) by using wet transfer (Bio-Rad). The
membrane was blocked in 5% (w/v) skimmed milk in PBS, rinsed and incubated with primary antibody
solution at 4 °C overnight with rotation. After three washes in PBS, the membrane was incubated with
HRP labelled secondary antibody solution with agitation. After further washes, the membrane was
placed in ECL reagent (Seracare) and subsequently exposed to X-ray film. The antibodies used are
listed in Supplementary Table S1. Western blot image data were quantified by using Image]J software.
The target protein band density was normalized to the respective loading control band (3-actin) and
subsequently to the normalized intensity of the untreated sample.

2.4. RNA Extraction, Reverse Transcription and gPCR

RNA was extracted by using the miRNeasy kit (QIAGEN). Cells were lysed in 350 puL Qiazol
reagent and vortexed to homogenize the sample. After adding 70 pL chloroform, the samples were
mixed and spun at 12,000 g, 4 °C for 15 minutes. The supernatant was carefully removed, mixed
with 100% ethanol and loaded onto RNeasy mini columns. After a wash in RWT buffer, on column
DNase treatment was performed using RNase-free DNase (Qiagen). After further washes with RWT
and RPE buffers, RNA was eluted in RNase-free water. Concentration and quality were assessed using
a Nanodrop spectrophotometer. One ug RNA was transcribed with Superscript IV (Invitrogen) using
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a mixture of oligodT and random hexamer primers, according to the manufacturer’s instructions.
Quantitative PCR was performed by using QuantiNova kit on Mx3500P (Stratagene). An assay for the
house-keeping gene TBP was used as a normalizing control. Relative gene expression was calculated
using the AACt method - log2 fold changes between treated and control samples were calculated after
normalization to TBP. The statistical significance of log-transformed changes in gene expression was
evaluated by using T tests. The oligonucleotide primers used in this study are shown in Supplementary
Table S2.

2.5. Immunohistochemistry

Tissue microarrays (TMAs), containing 47 pre-chemotherapy, peripheral neuroblastic tumors
were stained by using a BMP4 antibody (EPR6211, Abcam). Immunohistochemistry staining was
scored as positive or negative by a pathologist blinded to the specimens. All human tissues were
acquired in compliance with the NSW Human Tissue and Anatomy Legislation Amendment Act 2003
(Australia). Ethics clearances 09/CHW/159 and LNR/14/SCHN/392 were approved by the Sydney
Children’s Hospital Network Human Research Ethics Committee to construct TMAs and use clinical
data, which was de-identified. Immunohistochemistry was performed with a Leica Microsystem
Bond III automated machine using the Bond Polymer Refine Detection Kit (Ref DS9800) followed by
Bond Dab Enhancer (AR9432). The slides were dewaxed with Bond Dewax Solution (AR9222). Heat
mediated antigen retrieval was performed using Bond Epitope Retrieval Solution for 20 min.

2.6. RNA-seq and Bioinformatic Analysis

IMR32 cells were treated with 5 ng/mL BMP4 and 2% (w/v) BSA (PBS) vehicle as control for 24 h and
were subsequently harvested. RNA was extracted by using a miRNeasy Mini Kit (Qiagen) as described
above. RNA concentration and quality were checked by using a Nanodrop spectrophotometer and a
bioanalyzer (Agilent). All RNA integrity values (RIN) were above 9. cDNA libraries were prepared
from 1 ng RNA as template, using the TruSeq Stranded Total RNA Library Prep Kit (Illumina) according
to the manufacturer’s instructions. The libraries were sequenced by using the paired-end option with
100 bp reads on Illumina HiSeq2000 and min. 50 million reads were obtained per sample. The reads
were aligned to the human genome (hg38) by using STAR and the alignment files (BAM) files were
further analysed in SeqMonk v1.45. (https://www.bioinformatics.babraham.ac.uk/projects/seqmonky).
Gene expression was quantified by using the Seqmonk RNA-seq analysis pipeline. Differentially
expressed genes (DEG) were identified by DESEQ2 (p < 0.005), and a minimum fold difference threshold
of 1.3 was applied. RNA sequencing data is available from the European Nucleotide Archive (ENA)
under the study accession number PRJEB36530. We performed Gene Signature Enrichment Analyses
(GSEAs) on preranked lists of log2-transformed relative gene expression values (Broad Institute).
Kaplan Meier survival analysis and K means clustering were performed by using the R2 Genomics
Analysis and Visualization Platform (http://r2.amc.nl).

2.7. Statistical Analysis

Statistical analysis of quantitative PCR data was performed on log-transformed fold change values,
by using T tests. Gene Set Enrichment Analysis of RNA-seq data was evaluated based on Normalised
Enrichment Score (NES) and False Discovery Rate (FDR), which was calculated based on permutation
of genes with a rank score. Normalized confluence of cells, which was used as a surrogate for growth,
was recorded at regular intervals in replicate samples and evaluated for significant differences at each
time point by using T tests. Normalized neurite length, identified by Incucyte Live Cell Imaging
System, was also assessed for statistical significance with T tests based on three measurements in
separate wells. These experiments have been done three times (1 = 3). Association of differentiation
status and patient survival with BMP4 expression in neuroblastic tumours, evaluated by using IHC
on tissue microarrays, was assessed with Chi-squared tests. Differentially expressed genes (DEGs)
in BMP4-treated neuroblastoma cells, detected by using RNA-seq, was assessed using the statistical
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model implemented in DESEQ2. Overlap of Wnt and BMP4-induced DEGs in neuroblastoma cells
was queried for significance by using a hypergeometric test. The significance of correlation of gene or
metagene expression with overall survival probability, as evaluated using a Kaplan-Meier survival
analysis, was performed with log rank tests. Significance of correlation between K mean clustering of
SEQC NB data set according to Wnt and BMP4-regulated genes was assessed using hypergeometric test.
Association of clinical correlates with BMP4-regulated genes in TARGET-NBL data set was evaluated
by using ANOVA.

3. Results

3.1. Cross-Talk between Wnt and BMP Signaling in Neuroblastoma

In our RNA-seq analysis of Wnt3a/Rspo2-treated neuroblastoma cells, BMP4 was amongst the
most highly induced genes (>50-fold) and BMP4 protein was also upregulated [16], leading us to further
analyse global effects of Wnt3a/Rspo2-treatment on BMP/TGF gene sets. As shown in Figure 1A, a
volcano plot of Gene Set Enrichment Analysis (GSEA) highlights the activation of all BMP/TGF-related
functional gene modules in comparison to the C2 collection of gene sets in the Molecular Signatures
Database (MSigDB, Broad Institute). We verified several receptors and ligands included in these gene
sets by gRT-PCR. Although BMP4 was the most highly induced ligand gene, BMP2, BMP6 and BMP7
also showed 2-3 fold induction (Figure 1B).

MSX1 and MSX2, which are known to be downstream of BMP4 [31], were also clearly induced,
prompting us to assess the effects of Wnt3a/Rspo2 and BMP4 treatments at the protein level, using
an antibody that recognises both MSX proteins. As seen in Figure 1C, analysis of treatments of 3
neuroblastoma cell lines consistently demonstrated that both Wnt and BMP4 ligands were able to
strongly induce the MSX transcription factors, albeit to different degrees and with some selectivity of
the paralogues induced apparent. Consistently with the convergence of Wnt and BMP signaling on
MSX proteins, GSEA analysis confirmed a profound effect of Wnt3a/Rspo2 on the MSX1-regulated
neuroblastoma transcriptome (Figure 1D).

Taken together, our data support Wnt and BMP4 signaling co-operating to regulate the
neuroblastoma transcriptome, at least in part by convergence on MSX induction.

3.2. BMP4 Signaling Affects Growth and Differentiation of Neuroblastoma Cells

We had previously demonstrated that Wnt ligands could inhibit the growth of neuroblastoma
cells, and also influence their differentiation state [16,19]. Given the intersection of Wnt and BMP
signaling suggested by our transcriptomic data, we next sought to directly examine the phenotype of
neuroblastoma cell-lines treated with BMP4. SK-N-BE(2)-C cells treated with as little as 0.1 ng/mL
BMP4 exhibited markedly decreased proliferation, with concentrations ranging between 1 ng/mL and
50 ng/mL essentially arresting cell-growth (Figure 2A-C). Activation of the BMP/TGF pathway was
confirmed by the robust elevation of phospho-SMAD1/5/9. There was a marked increase of Tropomyosin
receptor kinase A (TrkA), a well established marker of good prognosis in neuroblastoma [33]. Although
immunoblotting with cleaved caspase 3 antibody showed that there was no apoptosis, an increase
of the cell-cycle inhibitor p27 was evident, together with a decrease of MYCN and E2F1 proteins
(Figure 2D, Supplementary Figure S1). These markers are indicative of G1/S-phase cell cycle arrest,
and cell-cycle analysis also showed a significant increase of cell population in G1 (Supplementary
Figure S2).
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Figure 1. Convergence of Wnt and BMP pathways in NB. (A) GSEA Volcano plot on RNA-seq data of
Wnt3a/Rspo2 (WR) induced SK-N-BE(2)-C cells (ERP023744) with C2 group of gene sets (Molecular
Signatures Database, Broad Institute), highlighting upregulation of BMP and TGF-§ sets, shown in red.
(B) Genes coding for BMP ligands, receptors and BMP target genes MSX1 and MSX2 were upregulated
by 72H Wnt3a/Rspo2 treatment in SK-N-BE(2)-C and SH-SY5Y cells as detected by qPCR. Statistically
significant differences (p < 0.05) are indicated by asterisks (1 = 3). (C) Western blot of neural crest master
regulators MSX1 and MSX2 induction by both Wnt3a/Rspo2 and BMP4 treatment in neuroblastoma
cells after 72-96H treatments. (representative of n = 2). Quantification relative to the control samples,
after normalization to the loading controls, is shown in the tables. (D) GSEA showing upregulation of
MSX1 target genes (GSE16481, 48H induction) in WR-treated SK-N-BE(2)-C.
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Figure 2. BMP4 treatment induces growth inhibition in SK-N-BE(2)-C cells. (A) Phase contrast image
of vehicle-treated SK-N-BE(2)-C cells, and (B) 10 ng/mL BMP4-treated SK-N-BE(2)-C cells after 96 h.
(C) Cell confluence was measured and analysed in triplicates by Incucyte live cell imaging and was
used as a surrogate for growth. Normalized confluence was significantly (p < 0.01) reduced by BMP4
in all concentrations tested by 30 h after treatment, based on analysis of triplicate treatments. This
experiment is a representative of 3 biological replicates (1 = 3). (D) Western blot of changes in protein
expression and phosphorylation after 96 h of BMP4 treatment. Quantification of Western blot data is
shown in Supplementary Figure S1A.

We next assessed a second MYCN-amplified (MNA) neuroblastoma cell-line, IMR32, confirming
the growth-inhibitory effects of BMP4, with the lowest significant effect observed at 5 ng/mL (Figure 3).
In general, growth suppression was not as marked in IMR32 cells relative to SK-N-BE(2)-C cells;
however, we observed clear neuritogenesis at concentrations of Ing/ml and above (Figure 3B,D). A
protein analysis again confirmed a robust phosphorylation of SMAD1/5/9, a lack of apoptosis, and
induction of p27 and TrkA (Figure 3E, Supplementary Figure S1). E2F1 was again decreased, but MYCN
levels were not markedly affected. Consistently with the increase of neurites, dopamine 3-hydroxylase
(DBH) protein expression was induced by BMP4 treatment. In order to evaluate whether the effects of
BMP4 were restricted to MNA neuroblastoma only, we also assessed the non-MNA neuroblastoma
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cell-line SH-SY5Y, and found that, similar to SK-N-BE(2)-C cells, BMP4 induced growth suppression.
Like SK-N-BE(2)-C, SH-SY5Y cells showed no overt signs of neuritogenesis (Supplementary Figure S3).
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Figure 3. BMP4 treatment induces growth inhibition and phenotypic change in IMR32. Phase contrast
image of (A) vehicle and (B) BMP4-treated IMR32 cells after 96 h (10 ng/mL). (C) Normalized cell
confluence, measured in triplicates, was significantly (p < 0.01) reduced by BMP4 in concentrations
above 5 ng/mL (n = 3). (D) Significant changes (p < 0.01) in normalized neurite length was observed
after treatment with BMP4 at concentrations above 1 ng/mL (1 = 3). (E) Western blots showing protein
expression and phosphorylation changes after 48-72 h BMP4 treatment.

Together, these phenotypic analyses show that BMP signaling can block the proliferation of
neuroblastoma cells, as well as inducing differentiation, similar to our findings with Wnt signaling in
neuroblastoma [16].
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3.3. BMP4 Protein Expression Correlates with Better Prognosis of Neuroblastoma Patients

It is well known that BMP signaling can have both pro- and anti-proliferative effects, depending
on cell context [30]. Having established that BMP4 can restrict neuroblastoma proliferation
and induce differentiation, we next sought to establish whether BMP4 expression in primary
tumors would also reflect a potential tumor-suppressive function. Immunohistochemistry on
neuroblastoma tissue-microarrays (TMAs) containing 47 neuroblastic tumor patient cores of different
stages revealed that BMP4 expression was markedly restricted to tumors with more differentiation
(ganglioneuroblastoma and ganglioneuroma), with virtually no expression of BMP4 evident in
poorly differentiated neuroblastomas, including both MYCN amplified and non-amplified tumors
(Figure 4A—C). Positive and negative controls for immunostaining are shown in Supplementary
Figure S4. Statistical analysis confirmed the marked association of BMP expression with level of
differentiation (p = 0.0002, Figure 4D). Consistent with this, decreased BMP4 mRNA in the transgenic
Th-MYCN-driven mouse neuroblastoma model, relative to normal ganglia, was also revealed by
analysis of a published dataset (Supplementary Figure S4D) [34]. From the survival data available we
could also ascertain a significant association (p = 0.013) of low BMP4 expression and poor survival
(Figure 4E). Thus, the BMP4 expression pattern in primary tumors aligns with our in vitro functional
analyses, strongly suggesting a pro-differentiation and anti-growth role for BMP signaling, particularly
BMP4, in neuroblastoma.

3.4. Wnt and BMP4 Signaling Have Overlapping but Distinct Effects on the Neuroblastoma Transcriptome

In order to better define the genes and pathways affected by Wnt and BMP pathways in
neuroblastoma cells, we conducted RNA sequencing of IMR32 cells treated with BMP4. We identified
772 upregulated and 559 down-regulated genes (collectively referred to as BMP4 DEGs) after 24 h of
BMP4 treatment. Known targets of BMP signaling such as NOG, GREM2, GREM1 and BAMBI were
strongly induced, together with the ID family of transcription factors, further verifying a functional,
canonical BMP signaling pathway in IMR32 cells. Several Notch pathway genes were strongly induced,
including NOTCH3, HES1 and HEY1 (Figure 5A). We found a highly significant overlap (p < 0.001) of 31
genes between the 90 high confidence Wnt-regulated genes we identified previously in SK-N-BE(2)-C
cells [16] and the 1331 BMP4-regulated genes (p < 0.005, DESEQ?2 test, min. fold change 1.3), although 11
genes were oppositely regulated The complex interplay of BMP and Wnt signaling is also demonstrated
by the strong but opposite regulation of the non-canonical Wnt ligand WNT11 (Figure 5B).

In order to confirm that the IMR32 BMP4 regulated genes are representative of neuroblastoma
generally, we validated a panel of 5 upregulated and 5 downregulated BMP4 targets in SK-N-BE(2)-C
and IMR32 cells following BMP4 treatment. Strong concordance in BMP4 response was apparent
between both cell lines (Figure 5C). Interestingly, the epigenetically silenced neuroblastoma tumor
suppressor gene CLU was induced in both cell lines, together with another tumor suppressor CASZ1
only in IMR32 cells [35,36]. GSEA revealed that BMP4 induced strong upregulation of Wnt pathway
genes in IMR32, as well as downregulation of E2F1 and DNA replication signatures (Figure 5D). We
also constructed a gene set based on a functional neuroblastoma-specific MYCN signature of 157
genes whose up- or down-regulation in IMR32 cells had been demonstrated to be strongly linked
with neuroblastoma prognosis (MYCN157) [37]. BMP4 treatment had a repressive effect on the
MYCN-activated members of the MYCN157 signature and also negatively regulated pediatric cancer
markers. Upregulation of the Notch signaling pathway genes was confirmed by GSEA (Figure 5D). In
order to examine a potential crosstalk of signaling pathways at a global level, we plotted normalized
enrichment scores (NES) of GSEAs for our previous Wnt RNA-seq together with our BMP4 RNA-seq
data, using the C2 collection of Molecular Signatures Database (Broad Institute). We found not only a
strong mutual upregulation of genes participating in Wnt and BMP signaling, but also Notch signaling
with both BMP and Wnt (Figure 5E).
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Figure 4. BMP4 immunohistochemistry in neuroblastic tumors. Expression of BMP4 protein in

(A) mature ganglioneuroma, (B) ganglioneuroblastoma and maturing ganglioneuroma, (C) poorly
differentiated neuroblastoma, where the third tumor is MYCN-amplified. BMP4 expression was
positively and significantly correlated to (D) the degree of differentiation and (E) survival (Chi-squared
test). Neuroblasts (Nbl), maturing neuroblasts (MNbl), ganglion cells (G), Schwannian stroma (S),
Homer Wright rosettes (HR) and positively staining blood vessels (BV) are indicated with arrows.
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Figure 5. RNA-seq analysis of BMP4-treated IMR32 cells reveals Wnt and BMP4 signaling crosstalk in
neuroblastoma cells. (A) Heatmap of DEGs in IMR32 after 24H BMP4 treatment (5 ng/mL), p < 0.005
(DESEQ?2), minimum fold change 1.3. Canonical BMP4 and Notch target genes are indicated. (B) Venn
diagram and heatmap of shared target genes of BMP4 and WR datasets in neuroblastoma cells. The
number of shared genes is significantly higher than expected by chance (hypergeometric test p =

NES (WR)

4.8e-22). (C) Validation of BMP4 target genes in 2 neuroblastoma cell lines; statistically significant
differences (p < 0.05) are indicated by asterisks (1 = 3). (D) GSEA highlighting significant regulation of
functional gene sets. (E) Comparative GSEA analysis of C2 gene sets (Molecular Signatures Database,
Broad Institute) in BMP4-treated IMR32 and WR-treated SK-N-BE(2)-C cells reveals upregulation of
BMP/TGF (n = 29), Wnt (n = 12) and NOTCH (n = 11) gene sets by both treatments.
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We previously utilised our Wnt DEGs for k-means clustering of RNA-seq expression data of
primary neuroblastoma tumors (SEQC, GSE62564 [38]) to demonstrate that they are capable of
segregating clinical subtypes of neuroblastoma, such that a Wnt DEGs-dependent low risk (Wnt-LR),
intermediate risk (Wnt-IR), and two high-risk (with or without MNA,Wnt-HR) categories could be
identified [16]. We therefore tested whether the expression patterns of our BMP4 DEGs, which included
both up and downregulated genes, in primary tumors might also be able to partition clinical subtypes
and be predictive of outcome. As shown in Figure 6A, k-means clustering of RN A-seq data of 498
primary neuroblastomas (SEQC) with the 1331 BMP4 DEGs identified 3 patient clusters, corresponding
to 3 distinct risk categories. Kaplan-Meier curves for the three BMP clusters demonstrated that
BMP4 cluster 1 was associated with low-risk, BMP4 cluster 2 with intermediate risk, and BMP4
cluster 3 with high risk (Figure 6B). Further, BMP4 cluster 1 aligned remarkably closely with Wnt-LR,
BMP4 cluster 2 with Wnt-IR, and BMP4 cluster 3 with Wnt-HR (p = 1.1e-150 Chi-squared test,
Supplementary Figure S5). Kaplan—Meier analysis of BMP4 upregulated genes showed that their
high expression correlates with good prognosis in the SEQC patient set, whereas high expression of
BMP4 downregulated genes correlates with poor prognosis (Figure 6C-D), suggesting that BMP4
induces gene expression programmes associated with less aggressive clinical subtypes. Similarly,
expression of neuroblastoma specific BMP4 upregulated genes significantly correlated with better
survival, favourable histology and lower expression of Ki67 proliferation marker in another NB tumour
data set, TARGET-NBL (Supplementary Figure S6). Conversely, BMP4 downregulated genes showed
association with poor prognosis and unfavourable histology and high Ki67 immunoreactivity.

Taken together, our RNA-seq reveals profound effects of BMP4 on the neuroblastoma cell
transcriptome, including interaction with Wnt and Notch signaling. Importantly, our analyses strongly
support a growth-suppressive function for BMP4 signaling in neuroblastoma.
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Figure 6. Meta-analysis of BMP4 target gene expression in primary neuroblastomas. (A) K-means
clustering of BMP4 target genes in primary tumor gene expression data set SEQC (1 = 498, k = 3). The
coloured bars on the top indicate risk status, stage, MYCN amplification, survival, progression and
clustering according to WR target genes. (B) Clustering according to BMP4 target gene expression
divided the SEQC patient cohort into prognostic groups with significantly different survival probabilities.
(C) Kaplan—Meier analyses showing that high expression of BMP4-upregulated genes strongly and
significantly correlates with survival, while (D) high levels of genes downregulated by BMP4 is
associated with poor prognosis.
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3.5. Notch Signaling Is Downstream of Wnt-BMP Signaling

Our analysis of Wnt DEGs has suggested interactions between Wnt and Notch signaling in
neuroblastoma [16]. As MSX1 has been shown to upregulate Notch signaling [18], we next examined
the links between Wnt, BMP4, MSX1 and Notch in neuroblastoma. Notch pathway targets and effectors
were highly induced in our RNA-seq of IMR32 treated with BMP4, so we first validated a panel
of Notch pathway genes, including HES1, MAFB, MAML?2 and NOTCH3 (Figure 7A), confirming
a BMP4-Notch signaling pathway in neuroblastoma. We further examined BMP4 effects on Notch
signaling by protein analysis of IMR32 and SK-N-BE(2)-C cell lysates. In both cell-lines, simultaneous
induction of MSX1 and cleavage of NOTCH3 was observed, together with upregulation of the Notch
target and effector protein HES1 (Figure 7B). Real-time PCR confirmed that BMP4 induced Notch
genes in SK-N-BE(2)-C cells too (Figure 7C). Finally, we evaluated the regulation of NOTCH3-ICD
induced genes identified in IMR32 cells [39] in our BMP4 and Wnt RNA-seq data. GSEA revealed
a striking positive correlation between BMP4 and NOTCH-ICD induced genes, and similarly with
BMP4 and NOTCH-ICD repressed genes (Figure 7D). Our Wnt DEGs also showed a correlation
with the NOTCHS3-ICD regulated transcriptome in neuroblastoma, but to a lesser extent than BMP4
(Figure 7E). Together these studies confirm the strong interplay of Wnt, BMP and Notch signaling in
determining transcriptional programmes in neuroblastoma, leading to growth arrest and, in some
cell-lines, differentiation (Figure 8).
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Figure 7. BMP4 and Wnt regulate Notch signaling in neuroblastoma. (A) Regulation of Notch pathway
genes by BMP4 in IMR32 cells, detected by qPCR. Statistically significant differences (p < 0.05) are
indicated by asterisks (1 = 3). (B) BMP4 treatment leads to NOTCHS3 cleavage, upregulation of Notch
target/effector protein HES1 and MSX1/2 proteins in IMR32 and SK-N-BE(2)-C cells. (C) Regulation of
Notch pathway genes by BMP4 in SK-N-BE(2)-C cells, detected by gPCR (1 = 3). (D) GSEA of RNA-seq
data sets of BMP4-treated IMR32 and (E) Wnt3a/Rspo2-induced SK-N-BE(2)-C with NOTCH3-IC target
gene sets identified in IMR32.
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Figure 8. Model for Wnt, BMP, MSX and Notch crosstalk. Regulatory interactions promoting growth
arrest and differentiation in neuroblastoma are outlined.

4. Discussion

The molecular etiology of neuroblastoma has been intensively studied at the level of deregulated
transcriptomes resulting from altered developmental transcription factor expression, as exemplified
by MYCN. Perhaps surprisingly for an embryonic tumor associated with a disrupted differentiation
programme, our understanding of the signaling pathway networks that are involved in neuroblastoma
tumorigenesis remains relatively limited. In particular, the role of the Wnt signaling pathway, often
clearly oncogenic in both adult and childhood cancers such as colorectal cancer and Wilms’ tumor [1],
has been found to exert more complex influences in NB, as shown several laboratories, including ours.
These data have indicated Wnt-induced growth promotion or suppression [13,16,40,41], modulation
of signaling and transcriptional pathways, interactions with MYCN [16,41], and underlying changes
in differentiation states contributing to neuroblastoma tumor heterogeneity [16,19]. In this study, we
define a Wnt-BMP growth inhibitory axis in neuroblastoma, identifying MSX and Notch signaling as
downstream mediators of growth suppression.

Previous studies have suggested a role for BMP signaling in regulating neuroblastoma cell
differentiation and proliferation. However, the upstream and downstream mechanistic intermediates
of BMPs have never been characterized, including the crosstalk with other signaling pathways. BMP2
induced neural differentiation in mouse neuroblastoma cells by increasing the expression of neurogenic
transcription factors DIx2, Brn3a, and NeuroD6 [22]. Similarly, BMP2 was shown to induce growth
arrest and neuronal differentiation of SH-SY5Y and RTBM cell-lines subsequent to accumulation of
p27 [23]. Although BMP2 has been shown to be a Wnt target gene in other cell types, our RNA-seq
of Wnt3a/Rspo2 treated neuroblastoma cells highlighted BMP4 as the most prominent BMP gene
downstream of Wnt/(3-catenin signaling, and a recent study showed that BMP4 can trigger neurite-like
extensions in SH-SY5Y cells, induce TrkA, and decrease MYCN and Ki-67 [24]. Our study in part
agrees with these findings, but with important differences and clearer mechanistic insights. Our
studies quantify and confirm growth suppression of not only SH-SY5Y cells, but also SK-N-BE(2)-C
and IMR32 cells, together with increases of TrkA. Clear neuritogenesis was only observed in IMR32
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cells. Furthermore, our studies do not suggest that reduced MYCN levels are the predominant effect of
BMP4 treatment, Ferlemann et al. having suggested this based on MYCN reduction in the non-MNA
neuroblastoma line SH-SY5Y [24]. Given our confirmation of G1-phase cell-cycle arrest, reductions in
levels of MYCN and E2F1 may be attributable to cell-cycle effects. However, based on GSEA analysis
of our RNA-seq data, which demonstrate a strong effect of BMP4 on MYCN-mediated gene regulation,
we suggest that BMP4 might more subtly interfere with MYCN transcriptional activity.

Our transcriptomic analysis did not support activation of DLX2, BRN3A, or NEUROD6 genes
as being involved in the BMP4-induced phenotypes of neuroblastoma cells, as previously suggested
by studies using BMP2 [22]. Rather, our studies confirmed strong and consistent induction of MSX
proteins, in particular MSX1. MSX1 is already known to be downstream of BMP signaling in the
developing neural crest [31] and has been shown to suppress proliferation and colony formation in
soft agar when exogenously over-expressed in neuroblastoma cells. This study by Revet et al. further
established that MSX1 activated NOTCH3 and that low mRNA expression of the Notch pathway
target HEY1 correlated with poor prognosis [18]. The suggested link between BMP, MSX and Notch
signaling was verified by both our RNA-seq and protein expression analyses. The role(s) of Notch
signaling in neuroblastoma are complex, and although recent studies have linked it primarily with
tumor heterogeneity and differentiation states of neuroblastoma [21,42], other studies, in addition to
Revet et al. [18], have suggested that Notch signaling can be growth suppressive in neuroblastoma.
In particular, neuroblastoma growth inhibition was demonstrated following exogenous expression
of the intracellular domain of all three NOTCH proteins (NOTCH1-3). Furthermore, transduction
with HES1 of several neuroblastoma cell-lines, including IMR32 and SH-SY5Y, led to inhibition of
proliferation, and growth was also inhibited by treatment with recombinant Notch ligand Jag1 [43].
Another study associating Notch signaling with cell migration reported that the NOTCH3-ICD led
to a transient attenuation of the cell-cycle [39]. Importantly, a study demonstrating the therapeutic
benefits of the histone deacetylase inhibitor panobinostat in vivo, using the Th-MYCN mouse model of
neuroblastoma, demonstrated that growth inhibition and differentiation resulting from panobinostat
were accompanied by increased Notch and BMP pathway genes [44]. On the basis of published work
and our data, we propose that the net effect of BMP signaling in neuroblastoma is contingent on
signaling crosstalk with Notch.

Whilst our analyses provide, for the first time, strong evidence for the interplay of Wnt, BMP4 and
Notch signaling in neuroblastoma, it is unlikely that the profound effects of BMP4 on the neuroblastoma
transcriptome and phenotype are mediated solely by any factor, but are rather a co-ordinated effect
of the complex interactions of signaling pathways and developmental transcription factors. BMP4
can also control growth by non-SMAD-dependent pathways such as MEK/ERK signaling [45] and it
will be important to conduct phosphoproteomic analyses in the future. Nevertheless, our compelling
demonstration of BMP4 protein absence in poorly differentiated and aggressive neuroblastomas, and
BMP4’s strong anti-proliferative effect raise the possibility of exploiting BMP4 or agonists of BMP
signaling as therapeutic agents. Interestingly, a BMP9-derived peptide has been shown to enhance
the differentiation of neuroblastoma cells [46]. Our characterization of the Wnt-BMP-MSX-Notch
pathway and its associated biomarkers rationalises the evaluation of such novel therapeutics, as well
as providing a foundation for delineating signaling regulatory networks in neuroblastoma.
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immunohistochemistry, and Bmp4 expression in the Th-MYCN mouse neuroblastoma model. Supplementary
Figure S5. Correlations between BMP4 and Wnt DEG prognostic clusters in 498 neuroblastomas. Supplementary
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Supplementary Table S1. Antibodies used in this study. Supplementary Table S2. Oligonucleotide primers used in
this study.

Author Contributions: M.S.: Conceptualization, Methodology, Formal analysis, Investigation, Data curation,
Writing—original draft; review & editing. Z.M.: Formal analysis, Investigation. J.B., A.G. & M.K.: Investigation.


http://www.mdpi.com/2073-4409/9/3/783/s1

Cells 2020, 9, 783 16 of 18

D.C.: Resources. K.M.: Conceptualization, Methodology, Formal analysis, Investigation, Funding acquisition,
Supervision, Writing—original draft; review & editing. All authors have read and agreed to the published version
of the manuscript.

Funding: We would like to thank the Children’s Cancer and Leukaemia Group (CCLG), the Biotechnology and
Biological Sciences Research Council (BB/P008232/1), Cancer Research UK (A12743/A21046) and the Showering
Fund for funding this study.

Acknowledgments: We wish to thank Jane Coghill and Christy Waterfall at the University of Bristol Genomics
Facility for help with transcriptomics, Andy Herman for help with flow cytometry and Sadijaan Malik for technical
assistance. We greatly indebted to Aysen Yuksei and Michael Krivanek for construction of the tissue microarrays
and reviewing pathology data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

ADRN adrenergic

EMT epithelial-mesenchymal transition

ERK extracellular signal-regulated kinase

GRN gene regulatory network

GSEA Geneset Enrichment Analysis.

ICD Intracellular Domain.

KEGG Kyoto encyclopedia of genes and genomes

LEF lymphoid enhancer binding factor

MEK MAPK/ERK kinase

MNA MYCN-amplified

Rspo R-spondin

TCF T-cell-factor

TGF Transforming Growth Factor
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