32 research outputs found

    Connectivity-enhanced diffusion analysis reveals white matter density disruptions in first episode and chronic schizophrenia.

    Get PDF
    Reduced fractional anisotropy (FA) is a well-established correlate of schizophrenia, but it remains unclear whether these tensor-based differences are the result of axon damage and/or organizational changes and whether the changes are progressive in the adult course of illness. Diffusion MRI data were collected in 81 schizophrenia patients (54 first episode and 27 chronic) and 64 controls. Analysis of FA was combined with "fixel-based" analysis, the latter of which leverages connectivity and crossing-fiber information to assess both fiber bundle density and organizational complexity (i.e., presence and magnitude of off-axis diffusion signal). Compared with controls, patients with schizophrenia displayed clusters of significantly lower FA in the bilateral frontal lobes, right dorsal centrum semiovale, and the left anterior limb of the internal capsule. All FA-based group differences overlapped substantially with regions containing complex fiber architecture. FA within these clusters was positively correlated with principal axis fiber density, but inversely correlated with both secondary/tertiary axis fiber density and voxel-wise fiber complexity. Crossing fiber complexity had the strongest (inverse) association with FA (r = -0.82). When crossing fiber structure was modeled in the MRtrix fixel-based analysis pipeline, patients exhibited significantly lower fiber density compared to controls in the dorsal and posterior corpus callosum (central, postcentral, and forceps major). Findings of lower FA in patients with schizophrenia likely reflect two inversely related signals: reduced density of principal axis fiber tracts and increased off-axis diffusion sources. Whereas the former confirms at least some regions where myelin and or/axon count are lower in schizophrenia, the latter indicates that the FA signal from principal axis fiber coherence is broadly contaminated by macrostructural complexity, and therefore does not necessarily reflect microstructural group differences. These results underline the need to move beyond tensor-based models in favor of acquisition and analysis techniques that can help disambiguate different sources of white matter disruptions associated with schizophrenia

    White Matter Integrity, Creativity, and Psychopathology: Disentangling Constructs with Diffusion Tensor Imaging

    Get PDF
    That creativity and psychopathology are somehow linked remains a popular but controversial idea in neuroscience research. Brain regions implicated in both psychosis-proneness and creative cognition include frontal projection zones and association fibers. In normal subjects, we have previously demonstrated that a composite measure of divergent thinking (DT) ability exhibited significant inverse relationships in frontal lobe areas with both cortical thickness and metabolite concentration of N-acetyl-aspartate (NAA). These findings support the idea that creativity may reside upon a continuum with psychopathology. Here we examine whether white matter integrity, assessed by Fractional Anisotropy (FA), is related to two measures of creativity (Divergent Thinking and Openness to Experience). Based on previous findings, we hypothesize inverse correlations within fronto-striatal circuits. Seventy-two healthy, young adult (18–29 years) subjects were scanned on a 3 Tesla scanner with Diffusion Tensor Imaging. DT measures were scored by four raters (α = .81) using the Consensual Assessment Technique, from which a composite creativity index (CCI) was derived. We found that the CCI was significantly inversely related to FA within the left inferior frontal white matter (t = 5.36, p = .01), and Openness was inversely related to FA within the right inferior frontal white matter (t = 4.61, p = .04). These findings demonstrate an apparent overlap in specific white matter architecture underlying the normal variance of divergent thinking, openness, and psychotic-spectrum traits, consistent with the idea of a continuum

    Cortical Thickness and Subcortical Gray Matter Reductions in Neuropsychiatric Systemic Lupus Erythematosus

    Get PDF
    Within systemic lupus erythematosus (SLE) patients can be divided into groups with and without central nervous system involvement, the latter being subcategorized as neuropsychiatric systemic lupus erythematosus (NPSLE). While a number of research groups have investigated NPSLE, there remains a lack of consistent application of this diagnostic criteria within neuroimaging studies. Previous neuroimaging research suggests that SLE patients have reduced subcortical and regional gray matter volumes when compared to controls, and that these group differences may be driven by SLE patients with neuropsychiatric symptoms. The current study sought to compare measures of cortical thickness and subcortical structure volume between NPSLE, SLE, and healthy controls. We hypothesized that patients with NPSLE (N = 21) would have thinner cortex and reduced subcortical gray matter volumes when compared to SLE (N = 16) and control subjects (N = 21). All subjects underwent MRI examinations on a 1.5 Tesla Siemens Sonata scanner. Anatomical reconstruction and segmentation were performed using the FreeSurfer image analysis suite. Cortical and subcortical volumes were extracted from FreeSurfer and analyzed for group differences, controlling for age. The NPSLE group exhibited decreased cortical thickness in clusters of the left frontal and parietal lobes as well as in the right parietal and occipital lobes compared to control subjects. Compared to the SLE group, the NPSLE group exhibited comparable thinning in clusters of the frontal and temporal lobes. Controlling for age, we found that between group effects for subcortical gray matter structures were significant for the thalamus (F = 3.06, p = .04), caudate nucleus (F = 3.19, p = .03), and putamen (F = 4.82, p = .005). These results clarify previous imaging work identifying cortical atrophy in a mixed SLE and NPSLE group, and suggest that neuroanatomical abnormalities are specific to SLE patients diagnosed with neuropsychiatric symptoms. Future work should help elucidate the underlying mechanisms underlying the emerging neurobiological profile seen in NPSLE, as well as clarify the apparent lack of overlap between cortical thinning and functional activation results and other findings pointing to increased functional activation during cognitive tasks

    The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium

    Full text link
    Current knowledge about functional connectivity in obsessive-compulsive disorder (OCD) is based on small-scale studies, limiting the generalizability of results. Moreover, the majority of studies have focused only on predefined regions or functional networks rather than connectivity throughout the entire brain. Here, we investigated differences in resting-state functional connectivity between OCD patients and healthy controls (HC) using mega-analysis of data from 1024 OCD patients and 1028 HC from 28 independent samples of the ENIGMA-OCD consortium. We assessed group differences in whole-brain functional connectivity at both the regional and network level, and investigated whether functional connectivity could serve as biomarker to identify patient status at the individual level using machine learning analysis. The mega-analyses revealed widespread abnormalities in functional connectivity in OCD, with global hypo-connectivity (Cohen’s d: -0.27 to -0.13) and few hyper-connections, mainly with the thalamus (Cohen’s d: 0.19 to 0.22). Most hypo-connections were located within the sensorimotor network and no fronto-striatal abnormalities were found. Overall, classification performances were poor, with area-under-the-receiver-operating-characteristic curve (AUC) scores ranging between 0.567 and 0.673, with better classification for medicated (AUC = 0.702) than unmedicated (AUC = 0.608) patients versus healthy controls. These findings provide partial support for existing pathophysiological models of OCD and highlight the important role of the sensorimotor network in OCD. However, resting-state connectivity does not so far provide an accurate biomarker for identifying patients at the individual level

    Safety, feasibility, tolerability, and clinical effects of repeated psilocybin dosing combined with non-directive support in the treatment of obsessive-compulsive disorder: protocol for a randomized, waitlist-controlled trial with blinded ratings

    Get PDF
    BackgroundTo date, few randomized controlled trials of psilocybin with non-directive support exist for obsessive-compulsive disorder (OCD). Results and participant feedback from an interim analysis of an ongoing single-dose trial (NCT03356483) converged on the possibility of administering a higher fixed dose and/or more doses of psilocybin in future trials for presumably greater benefits.ObjectivesThis trial aims to evaluate the safety, feasibility, tolerability, and clinical effects of two doses of psilocybin paired with non-directive support in the treatment of OCD. This trial also seeks to examine whether two doses of psilocybin lead to greater OCD symptom reduction than a single dose, and to elucidate psychological mechanisms underlying the effects of psilocybin on OCD.DesignA randomized (1:1), waitlist-controlled design with blinded ratings will be used to examine the effects of two doses of oral psilocybin paired with non-directive support vs. waitlist control on OCD symptoms. An adaptive dose selection strategy will be implemented (i.e., first dose: 25 mg; second dose: 25 or 30 mg).Methods and analysisThis single-site trial will enroll 30 adult participants with treatment-refractory OCD. Aside from safety, feasibility, and tolerability metrics, primary outcomes include OCD symptoms assessed on the Yale-Brown Obsessive-Compulsive Scale – Second Edition (Y-BOCS-II). A blinded independent rater will assess primary outcomes at baseline and the primary endpoint at the end of the second dosing week. Participants will be followed up to 12 months post-second dosing. Participants randomized to waitlist will be rescreened after 7 weeks post-randomization, and begin their delayed treatment phase thereafter if still eligible.EthicsWritten informed consent will be obtained from participants. The institutional review board has approved this trial (protocol v. 1.7; HIC #2000032623).DiscussionThis study seeks to advance our ability to treat refractory OCD, and catalyze future research seeking to optimize the process of psilocybin treatment for OCD through understanding relevant psychological mechanisms.Clinical trial registration: ClinicalTrials.gov, identifier NCT05370911

    The thalamus and its subnuclei—a gateway to obsessive-compulsive disorder

    Get PDF
    Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T-1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered (https://osf.io/73dvy) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = -0.15 to -0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status

    Yale Program for Psychedelic Science (YPPS) Manual for Psilocybin Combined with Non-Directive Support in the Treatment of OCD

    No full text
    The Yale Program for Psychedelic Science (YPPS) supports a multi-disciplinary research community dedicated to investigating the effects of psychedelic substances on brain function, cognition, and behavior, including their therapeutic potential in treating neuropsychiatric conditions. In support of this mission, YPPS is testing the safety and efficacy of psilocybin, administered in conjunction with non-directive psychological support, as a treatment for certain neurological and psychiatric conditions. The current study, “Effects of repeated dosing of psilocybin on obsessive-compulsive disorder: A randomized, waitlist-controlled study” (NCT05370911), will investigate the effects of repeated dosing of oral psilocybin on obsessive-compulsive disorder (OCD) symptomatology and assess psychological mechanisms that may mediate psilocybin’s therapeutic effects on OCD. The study will employ a randomized, waitlist-controlled design with blinded ratings, with participants randomized to receive either immediate treatment (two doses of oral psilocybin separated by one week) or delayed treatment (7 weeks post-randomization). An adaptive dose selection strategy will be implemented; the first dose will be fixed at 25 mg of psilocybin, and the second dose will be 25 mg or 30 mg, depending on whether or not a clinically significant response is detected after the first dose. This manual provides background and details for facilitator-related activities at various phases – pre-dosing preparation sessions, dosing sessions, and post-dosing integration sessions. The approach for psychological support by facilitators is unstructured and non-directive. In other words, facilitators do not provide any structured therapy, but rather collaborate and support participants as they prepare for psilocybin dosing sessions, ensure their psychological safety during dosing sessions, and provide them with an unstructured, non-directive context in which to process and consolidate their experiences during and after each dosing at defined time points. In doing so, while no structured therapy program is implemented, the presence and accompaniment by facilitators throughout all study sessions in the treatment phase may be experienced as supportive or even therapeutic by participants. This manual shares several features with a previous YPPS protocol-specific session monitor manual for single-dose psilocybin paired with psychological support for OCD (Ching et al., 2022), including the primary focus on a non-directive approach for preparatory, dosing, and integration sessions. Distinctive additions in this manual include a discussion of psychological processes in OCD that serve as a context for responsive facilitation of study visits, as well as updated facilitator checklists for preparatory, dosing, and integration sessions specific to the current two-dose protocol
    corecore