105 research outputs found
Senior Recital: Peyton Gray, Trombone; Lu Witzig, Piano; April 5, 2024
Kemp Recital HallApril 5, 2024Friday Evening9:00 p.m
Thermal/structural analysis of a transpiration cooled nozzle
The 8-foot High Temperature Tunnel (HTT) at LaRC is a combustion driven, high enthalpy blow down wind tunnel. In Mar. 1991, during check out of the transpiration cooled nozzle, pieces of platelets were found in the tunnel test section. It was determined that incorrect tolerancing between the platelets and the housing was the primary cause of the platelet failure. An analysis was performed to determine the tolerance layout between the platelets and the housing to meet the structural and performance criteria under a range of thermal, pressure, and bolt preload conditions. Three recommendations resulted as a product of this analysis
Senior Recital: Ethan Machamer, Trombone; Lu Witzig, Piano; Joseph Buczko, Trombone; Connor Franke, Trombone; Peyton Gray, Trombone; Nick Sisson, Trombone; Charlie Machamer, Piano; Jack O\u27Mahony, Bass; Sean Duffy, Drums; April 6, 2024
Kemp Recital HallApril 6, 2024Saturday Evening4:00 p.m
Senior Recital: JT Butcher, Tuba; Ryan Valdivia, Trumpet; Lauren Cancio, Trumpet; Ryan Burns, Horn; Peyton Gray, Trombone; Maura Nika, Piano; November 3, 2023
Kemp Recital HallNovember 3, 2023Friday Evening8:30 p.m
The Lung Image Database Consortium (LIDC):ensuring the integrity of expert-defined "truth"
RATIONALE AND OBJECTIVES: Computer-aided diagnostic (CAD) systems fundamentally require the opinions of expert human observers to establish “truth” for algorithm development, training, and testing. The integrity of this “truth,” however, must be established before investigators commit to this “gold standard” as the basis for their research. The purpose of this study was to develop a quality assurance (QA) model as an integral component of the “truth” collection process concerning the location and spatial extent of lung nodules observed on computed tomography (CT) scans to be included in the Lung Image Database Consortium (LIDC) public database. MATERIALS AND METHODS: One hundred CT scans were interpreted by four radiologists through a two-phase process. For the first of these reads (the “blinded read phase”), radiologists independently identified and annotated lesions, assigning each to one of three categories: “nodule ≥ 3mm,” “nodule < 3mm,” or “non-nodule ≥ 3mm.” For the second read (the “unblinded read phase”), the same radiologists independently evaluated the same CT scans but with all of the annotations from the previously performed blinded reads presented; each radiologist could add marks, edit or delete their own marks, change the lesion category of their own marks, or leave their marks unchanged. The post-unblinded-read set of marks was grouped into discrete nodules and subjected to the QA process, which consisted of (1) identification of potential errors introduced during the complete image annotation process (such as two marks on what appears to be a single lesion or an incomplete nodule contour) and (2) correction of those errors. Seven categories of potential error were defined; any nodule with a mark that satisfied the criterion for one of these categories was referred to the radiologist who assigned that mark for either correction or confirmation that the mark was intentional. RESULTS: A total of 105 QA issues were identified across 45 (45.0%) of the 100 CT scans. Radiologist review resulted in modifications to 101 (96.2%) of these potential errors. Twenty-one lesions erroneously marked as lung nodules after the unblinded reads had this designation removed through the QA process. CONCLUSION: The establishment of “truth” must incorporate a QA process to guarantee the integrity of the datasets that will provide the basis for the development, training, and testing of CAD systems
Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate
Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior
A Cenozoic uplift history of Mexico and its surroundings from longitudinal river profiles
Geodynamic models of mantle convection predict that Mexico and western North America share a history of dynamic support. We calculate admittance between gravity and topography, which indicates that the elastic thickness of the plate in Mexico is 11 km and in western North America it is 12 km. Admittance at wavelengths > 500 km in these regions suggests that topography is partly supported by subcrustal processes. These results corroborate estimates of residual topography from isostatic calculations and suggest that the amount of North American topography supported by the mantle may exceed 1 km. The Cenozoic history of magmatism, sedimentary flux, thermochronometric denudation estimates, and uplifted marine terraces imply that North American lithosphere was uplifted and eroded during the last 30 Ma. We jointly invert 533 Mexican and North American longitudinal river profiles to reconstruct a continent-scale rock uplift rate history. Uplift rate is permitted to vary in space and time. Erosional parameters are calibrated using incision rate data in southwest Mexico and the Colorado Plateau. Calculated rock uplift rates were 0.15-0.2 mm/yr between 25 and 10 Ma. Central Mexico experienced the highest uplift rates. Central and southern Mexico continued to uplift at 0.1 mm/yr until recent times. This uplift history is corroborated by independent constraints. We predict clastic flux to the Gulf of Mexico and compare it to independent estimates. We tentatively suggest that the loop between uplift, erosion, and deposition can be closed here. Mexico’s staged uplift history suggests that its dynamic support has changed during the last 30 Ma.G.G.R. was supported by an Imperial College London JRF
Palatal development of preterm and low birthweight infants compared to term infants – What do we know? Part 1: The palate of the term newborn
BACKGROUND: The evidence on prematurity as 'a priori' a risk for palatal disturbances that increase the need for orthodontic or orthognathic treatment is still weak. Further well-designed clinical studies are needed. The objective of this review is to provide a fundamental analysis of methodologies, confounding factors, and outcomes of studies on palatal development. One focus of this review is the analysis of studies on the palate of the term newborn, since knowing what is 'normal' is a precondition of being able to assess abnormalities. METHODS: A search profile based on Cochrane search strategies applied to 10 medical databases was used to identify existing studies. Articles, mainly those published before 1960, were identified from hand searches in textbooks, encyclopedias, reference lists and bibliographies. Sources in English, German, and French of more than a century were included. Data for term infants were recalculated if particular information about weight, length, or maturity was given. The extracted values, especially those from non-English paper sources, were provided unfiltered for comparison. RESULTS: The search strategy yielded 182 articles, of which 155 articles remained for final analysis. Morphology of the term newborn's palate was of great interest in the first half of the last century. Two general methodologies were used to assess palatal morphology: visual and metrical descriptions. Most of the studies on term infants suffer from lack of reliability tests. The groove system was recognized as the distinctive feature of the infant palate. The shape of the palate of the term infant may vary considerably, both visually and metrically. Gender, race, mode of delivery, and nasal deformities were identified as causes contributing to altered palatal morphology. Until today, anatomical features of the newborn's palate are subject to a non-uniform nomenclature. CONCLUSION: Today's knowledge of a newborn's 'normal' palatal morphology is based on non-standardized and limited methodologies for measuring a three-dimensional shape. This shortcoming increases bias and is the reason for contradictory research results, especially if pathologic conditions like syndromes or prematurity are involved. Adequate measurement techniques are needed and the 'normal palatal morphology' should be defined prior to new clinical studies on palatal development
- …