221 research outputs found

    What is the Fourier Transform of a Spatial Point Process?

    Get PDF
    This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell’s theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process

    Visualizing the Wavenumber Content of a Point Pattern

    Get PDF
    Spatial point patterns are a commonly recorded form of data in ecology, medicine, astronomy, criminology, epidemiology and many other application fields. One way to understand their second order dependence structure is via their spectral density function. However, unlike time series analysis, for point patterns such approaches are currently underutilized. In part, this is because the interpretation of the spectral representation of the underlying point processes is challenging. In this paper, we demonstrate how to band-pass filter point patterns, thus enabling us to explore the spectral representation of point patterns in space by isolating the signal corresponding to certain sets of wavenumbers

    Normal values and test–retest variability of stimulated-echo diffusion tensor imaging and fat fraction measurements in the muscle

    Get PDF
    OBJECTIVES: To assess the test–retest variability of both diffusion parameters and fat fraction (FF) estimates in normal muscle, and to assess differences in normal values between muscles in the thigh. METHODS: 29 healthy volunteers (mean age 37 years, range 20–60 years, 17/29 males) completed the study. Magnetic resonance images of the mid-thigh were acquired using a stimulated echo acquisition mode-echoplanar imaging (STEAM-EPI) imaging sequence, to assess diffusion, and 2-point Dixon imaging, to assess FF. Imaging was repeated in 19 participants after a 30 min interval in order to assess test–retest variability of the measurements. RESULTS: Intraclass correlation coefficients (ICCs) for test–retest variability were 0.99 [95% confidence interval, (CI): 0.98, 1] for FF, 0.94 (95% CI: 0.84, 0.97) for mean diffusivity and 0.89 (95% CI: 0.74, 0.96) for fractional anisotropy (FA). FF was higher in the hamstrings than the quadriceps by a mean difference of 1.81% (95% CI:1.63, 2.00)%, p < 0.001. Mean diffusivity was significantly lower in the hamstrings than the quadriceps (0.26 (0.13, 0.39) x10- 3 mm2s−1, p < 0.001) whereas fractional anisotropy was significantly higher in the hamstrings relative to the quadriceps with a mean difference of 0.063 (0.05, 0.07), p < 0.001. CONCLUSIONS: This study has shown excellent test-retest, variability in MR-based FF and diffusion measurements and demonstrated significant differences in these measures between hamstrings and quadriceps in the healthy thigh. ADVANCES IN KNOWLEDGE: Test–retest variability is excellent for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. Inter- and intraobserver variability were excellent for region of interest placement for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. There are significant differences in FF and diffusion measurements between the hamstrings and quadriceps in the normal muscle

    Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway

    Get PDF
    Foxp3-expressing regulatory T (T reg) cells have been implicated in parasite-driven inhibition of host immunity during chronic infection. We addressed whether parasites can directly induce T reg cells. Foxp3 expression was stimulated in naive Foxp3⁻ T cells in mice infected with the intestinal helminth Heligmosomoides polygyrus. In vitro, parasite-secreted proteins (termed H. polygyrus excretory-secretory antigen [HES]) induced de novo Foxp3 expression in fluorescence-sorted Foxp3⁻ splenocytes from Foxp3-green fluorescent protein reporter mice. HES-induced T reg cells suppressed both in vitro effector cell proliferation and in vivo allergic airway inflammation. HES ligated the transforming growth factor (TGF) β receptor and promoted Smad2/3 phosphorylation. Foxp3 induction by HES was lost in dominant-negative TGF-βRII cells and was abolished by the TGF-β signaling inhibitor SB431542. This inhibitor also reduced worm burdens in H. polygyrus-infected mice. HES induced IL-17 in the presence of IL-6 but did not promote Th1 or Th2 development under any conditions. Importantly, antibody to mammalian TGF-β did not recognize HES, whereas antisera that inhibited HES did not affect TGF-β. Foxp3 was also induced by secreted products of Teladorsagia circumcincta, a related nematode which is widespread in ruminant animals. We have therefore identified a novel pathway through which helminth parasites may stimulate T reg cells, which is likely to be a key part of the parasite's immunological relationship with the host.J.R. Grainger thanks the Wellcome Trust for studentship support through the 4-year PhD Program, H.J. McSorley, K.J. Filbey, and C.A.M. Finney thank the Medical Research Council for studentship support, E.J.D. Greenwood thanks the Wellcome Trust for an undergraduate summer studentship, and K.A. Smith, J.P. Hewitson, Y. Harcus, and R.M. Maizels thank the Wellcome Trust for Programme Grant support. A.Y. Rudensky is a Howard Hughes Medical Institute Investigator and is supported by a National Institutes of Health grant

    Data sharing: not as simple as it seems

    Get PDF
    In recent years there has been a major change on the part of funders, particularly in North America, so that data sharing is now considered to be the norm rather than the exception. We believe that data sharing is a good idea. However, we also believe that it is inappropriate to prescribe exactly when or how researchers should preserve and share data, since these issues are highly specific to each study, the nature of the data collected, who is requesting it, and what they intend to do with it. The level of ethical concern will vary according to the nature of the information, and the way in which it is collected - analyses of anonymised hospital admission records may carry a quite different ethical burden than analyses of potentially identifiable health information collected directly from the study participants. It is striking that most discussions about data sharing focus almost exclusively on issues of ownership (by the researchers or the funders) and efficiency (on the part of the funders). There is usually little discussion of the ethical issues involved in data sharing, and its implications for the study participants. Obtaining prior informed consent from the participants does not solve this problem, unless the informed consent process makes it completely clear what is being proposed, in which case most study participants would not agree. Thus, the undoubted benefits of data sharing does not remove the obligations and responsibilities that the original investigators hold for the people they invited to participate in the study

    Methane production in ruminant animals

    Get PDF
    Agriculture is a significant source of GHGs globally and ruminant livestock animals are one of the largest contributors to these emissions, responsible for an estimated 14% of GHGs (CH4 and N2O combined) worldwide. A large portion of GHG fluxes from agricultural activities is related to CH4 emissions from ruminants. Both direct and indirect methods are available. Direct methods include enclosure techniques, artificial (e.g. SF6) or natural (e.g. CO2) tracer techniques, and micrometeorological methods using open-path lasers. Under the indirect methods, emission mechanisms are understood, where the CH4 emission potential is estimated based on the substrate characteristics and the digestibility (i.e. from volatile fatty acids). These approximate methods are useful if no direct measurement is possible. The different systems used to quantify these emission potentials are presented in this chapter. Also, CH4 from animal waste (slurry, urine, dung) is an important source: methods pertaining to measuring GHG potential from these sources are included

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Breaking Up the C Complex Spliceosome Shows Stable Association of Proteins with the Lariat Intron Intermediate

    Get PDF
    Spliceosome assembly requires several structural rearrangements to position the components of the catalytic core. Many of these rearrangements involve successive strengthening and weakening of different RNA∶RNA and RNA∶proteins interactions within the complex. To gain insight into the organization of the catalytic core of the spliceosome arrested between the two steps of splicing chemistry (C complex), we investigated the effects of exposing C complex to low concentrations of urea. We find that in the presence of 3M urea C complex separates into at least three sub-complexes. One sub-complex contains the 5′exon, another contains the intron-lariat intermediate, and U2/U5/U6 snRNAs likely comprise a third sub-complex. We purified the intron-lariat intermediate sub-complex and identified several proteins, including U2 snRNP and PRP19 complex (NTC) components. The data from our study indicate that U2 snRNP proteins in C complex are more stably associated with the lariat-intron intermediate than the U2 snRNA. The results also suggest a set of candidate proteins that hold the lariat-intron intermediate together in C complex. This information is critical for further interpreting the complex architecture of the mammalian spliceosome

    Preconception Care and Treatment with Assisted Reproductive Technologies

    Get PDF
    Couples with fertility problems seeking treatment with assisted reproductive technologies (ART) such as in vitro fertilization should receive preconception counseling on all factors that are provided when counseling patients without fertility problems. Additional counseling should address success rates and possible risks from ART therapies. Success rates from ART are improving, with the highest live birth rates averaging about 40% per cycle among women less than 35 years old. A woman’s age lowers the chance of achieving a live birth, as do smoking, obesity, and infertility diagnoses such as hydrosalpinx, uterine leiomyoma, or male factor infertility. Singletons conceived with ART may have lower birth weights. Animal studies suggest that genetic imprinting disorders may be induced by certain embryo culture conditions. The major risk from ovarian stimulation is multiple gestation. About one-third of live-birth deliveries from ART have more than one infant, and twins represent 85% of these multiple-birth children. There are more complications in multiple gestation pregnancies, infants are more likely to be born preterm and with other health problems, and families caring for multiples experience more stress. Transferring fewer embryos per cycle reduces the multiple birth rate from ART, but the patient may have to pay for additional cycles of ART because of a lower likelihood of pregnancy
    corecore