'Institute of Electrical and Electronics Engineers (IEEE)'
Abstract
This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell’s theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process