68 research outputs found
The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency
OBJECTIVE. Hypospadias is a frequent congenital anomaly but in most cases an underlying cause is not found. Steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) is a key regulator of human sex development and an increasing number of SF-1 (NR5A1) mutations are reported in 46,XY disorders of sex development (DSD). We hypothesized that NR5A1 mutations could be identified in boys with hypospadias.
DESIGN AND METHODS. Mutational analysis of NR5A1 in 60 individuals with varying degrees of hypospadias from the German DSD network.
RESULTS. Heterozygous NR5A1 mutations were found in three out of 60 cases. These three individuals represented the most severe end of the spectrum studied as they presented with penoscrotal hypospadias, variable androgenization of the phallus and undescended testes (three out of 20 cases (15%) with this phenotype). Testosterone was low in all three patients and inhibin B/anti-Müllerian hormone (AMH) were low in two patients. Two patients had a clear male gender assignment. Gender re-assignment to male occurred in the third case. Two patients harbored heterozygous nonsense mutations (p.Q107X/WT, p.E11X/WT). One patient had a heterozygous splice site mutation in intron 2 (c.103-3A/WT) predicted to disrupt the main DNA-binding motif. Functional studies of the nonsense mutants showed impaired transcriptional activation of an SF-1-responsive promoter (Cyp11a). To date, adrenal insufficiency has not occurred in any of the patients.
CONCLUSIONS. SF-1 (NR5A1) mutations should be considered in 46,XY individuals with severe (penoscrotal) hypospadias, especially if undescended testes, low testosterone, or low inhibin B/AMH levels are present. SF-1 mutations in milder forms of idiopathic hypospadias are unlikely to be common
Mutations in TITF-1 are associated with benign hereditary chorea
Benign hereditary chorea (BHC) (MIM 118700) is an autosomal dominant
movement disorder. The early onset of symptoms (usually before the age of
5 years) and the observation that in some BHC families the symptoms tend
to decrease in adulthood suggests that the disorder results from a
developmental disturbance of the brain. In contrast to Huntington disease
(MIM 143100), BHC is non-progressive and patients have normal or slightly
below normal intelligence. There is considerable inter- and intrafamilial
variability, including dysarthria, axial dystonia and gait disturbances.
Previously, we identified a locus for BHC on chromosome 14 and
subsequently identified additional independent families linked to the same
locus. Recombination analysis of all chromosome 14-linked families
resulted initially in a reduction of the critical interval for the BHC
gene to 8.4 cM between markers D14S49 and D14S278. More detailed analysis
of the critical region in a small BHC family revealed a de novo deletion
of 1.2 Mb harboring the TITF-1 gene, a homeodomain-containing
transcription factor essential for the organogenesis of the lung, thyroid
and the basal ganglia. Here we report evidence that mutations in TITF-1
are associated with BHC
Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans
It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain–containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (–7), deletions of 7q (7q–), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with –7 and 7q– developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized
IMPROVE 2022 International Meeting on Pathway‐Related Obesity: Vision of Excellence
Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany
A new multi-system disorder caused by the Gαs mutation p.F376V
CONTEXT: The α subunit of the stimulatory G protein (Gαs) links numerous receptors to adenylyl cyclase. Gαs, encoded by GNAS, is expressed predominantly from the maternal allele in certain tissues. Thus, maternal heterozygous loss-of-function mutations cause hormonal resistance, as in pseudohypoparathyroidism type Ia, whereas somatic gain-of-function mutations cause hormone-independent endocrine stimulation, as in McCune-Albright syndrome. OBJECTIVE: We report two unrelated boys presenting with a new combination of clinical findings that suggest both gain and loss of Gαs function. DESIGN AND SETTING: Clinical features were studied and sequencing of GNAS was performed. Signaling capacities of wild-type and mutant Gαs were determined in the presence of different G protein–coupled receptors (GPCRs) under basal and agonist-stimulated conditions. RESULTS: Both unrelated patients presented with unexplained hyponatremia in infancy, followed by severe early onset gonadotrophin-independent precocious puberty and skeletal abnormalities. An identical heterozygous de novo variant (c.1136T>G; p.F376V) was found on the maternal GNAS allele in both patients; this resulted in a clinical phenotype that differed from known Gαs-related diseases and suggested gain of function at the vasopressin 2 receptor (V2R) and lutropin/choriogonadotropin receptor (LHCGR), yet increased serum PTH concentrations indicative of impaired proximal tubular PTH1 receptor (PTH1R) function. In vitro studies demonstrated that Gαs-F376V enhanced ligand-independent signaling at the PTH1R, LHCGR, and V2R and, at the same time, blunted ligand-dependent responses. Structural homology modeling suggested mutation-induced modifications at the C-terminal α5 helix of Gαs that are relevant for interaction with GPCRs and signal transduction. CONCLUSION: The Gαs p.F376V mutation causes a previously unrecognized multisystem disorder
Interindividual variation in DNA methylation at a putative POMC metastable epiallele Is associated with obesity
The estimated heritability of human BMI is close to 75%, but identified genetic variants explain only a small fraction of interindividual body-weight variation. Inherited epigenetic variants identified in mouse models named “metastable epialleles” could in principle explain this “missing heritability.” We provide evidence that methylation in a variably methylated region (VMR) in the pro-opiomelanocortin gene (POMC), particularly in postmortem human laser-microdissected melanocyte-stimulating hormone (MSH)-positive neurons, is strongly associated with individual BMI. Using cohorts from different ethnic backgrounds, including a Gambian cohort, we found evidence suggesting that methylation of the POMC VMR is established in the early embryo and that offspring methylation correlates with the paternal somatic methylation pattern. Furthermore, it is associated with levels of maternal one-carbon metabolites at conception and stable during postnatal life. Together, these data suggest that the POMC VMR may be a human metastable epiallele that influences body-weight regulation
Differential Modulation of Beta-Adrenergic Receptor Signaling by Trace Amine-Associated Receptor 1 Agonists
Trace amine-associated receptors (TAAR) are rhodopsin-like G-protein-coupled receptors (GPCR). TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR), phenylethylamine (PEA), octopamine (OA), but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1) and 2 (ADRB2) have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR) octopamine (OAR), ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes
- …