624 research outputs found
Generation of internal gravity waves by penetrative convection
The rich harvest of seismic observations over the past decade provides
evidence of angular momentum redistribution in stellar interiors that is not
reproduced by current evolution codes. In this context, transport by internal
gravity waves can play a role and could explain discrepancies between theory
and observations. The efficiency of the transport of angular momentum by waves
depends on their driving mechanism. While excitation by turbulence throughout
the convective zone has already been investigated, we know that penetrative
convection into the stably stratified radiative zone can also generate internal
gravity waves. Therefore, we aim at developing a semianalytical model to
estimate the generation of IGW by penetrative plumes below an upper convective
envelope. We derive the wave amplitude considering the pressure exerted by an
ensemble of plumes on the interface between the radiative and convective zones
as source term in the equation of momentum. We consider the effect of a thermal
transition from a convective gradient to a radiative one on the transmission of
the wave into the radiative zone. The plume-induced wave energy flux at the top
of the radiative zone is computed for a solar model and is compared to the
turbulence-induced one. We show that, for the solar case, penetrative
convection generates waves more efficiently than turbulence and that
plume-induced waves can modify the internal rotation rate on shorter time
scales. We also show that a smooth thermal transition significatively enhances
the wave transmission compared to the case of a steep transition. We conclude
that driving by penetrative convection must be taken into account as much as
turbulence-induced waves for the transport of internal angular momentum.Comment: Accepted for publication in A&A, 21 page
The role of rotation on Petersen Diagrams. The period ratios
The present work explores the theoretical effects of rotation in calculating
the period ratios of double-mode radial pulsating stars with special emphasis
on high-amplitude delta Scuti stars (HADS). Diagrams showing these period
ratios vs. periods of the fundamental radial mode have been employed as a good
tracer of non-solar metallicities and are known as Petersen diagrams (PD).In
this paper we consider the effect of moderate rotation on both evolutionary
models and oscillation frequencies and we show that such effects cannot be
completely neglected as it has been done until now. In particular it is found
that even for low-to-moderate rotational velocities (15-50 km/s), differences
in period ratios of some hundredths can be found. The main consequence is
therefore the confusion scenario generated when trying to fit the metallicity
of a given star using this diagram without a previous knowledge of its
rotational velocity.Comment: A&A in pres
On the interpretation of echelle diagrams for solar-like oscillations. Effect of centrifugal distortion
This work aims at determining the impact of slow to moderate rotation on the
regular patterns often present in solar-like oscillation spectra. We focus on
the well-known asteroseismic diagnostic echelle diagrams, examining how
rotation may modify the estimates of the large and small spacings, as well as
the identification of modes. We illustrate the work with a real case: the
solar-like star Bootis. The modeling takes into account rotation effects
on the equilibrium models through an effective gravity and on the oscillation
frequencies through both perturbative and non-perturbative calculations. We
compare the results of both type of calculations in the context of the regular
spacings (like the small spacings and the scaled small spacings) and echelle
diagrams. We show that for echelle diagrams the perturbative approach remains
valid for rotational velocities up to 40-50 km/s. We show that for the
rotational velocities measured in solar-like stars, theoretical oscillation
frequencies must be corrected up to the second-order in terms of rotation rate,
including near degeneracy effects. For rotational velocities of about 16 km/S
and higher, diagnostics on large spacings and on modal identification through
echelle diagrams can be significantly altered by the presence of the
components of the rotationally split modes. We found these effects to be
detectable in the observed frequency range. Analysis of the effects of rotation
on small spacings and scaled small spacings reveals that these can be of the
order of, or even larger than surface effects, typically turbulence,
microscopic diffusion, etc. Furthermore, we show that scaled spacings are
significantly affected by stellar distortion even for small stellar rotational
velocities (from 10-15 km/s) and therefore some care must be taken when using
them as indicators for probing deep stellar interiors.Comment: 10 pages,5 figures, accepted for publication in ApJ;
http://iopscience.iop.org/0004-637X/721/1/537
Stochastic excitation of non-radial modes I. High-angular-degree p modes
Turbulent motions in stellar convection zones generate acoustic energy, part
of which is then supplied to normal modes of the star. Their amplitudes result
from a balance between the efficiencies of excitation and damping processes in
the convection zones. We develop a formalism that provides the excitation rates
of non-radial global modes excited by turbulent convection. As a first
application, we estimate the impact of non-radial effects on excitation rates
and amplitudes of high-angular-degree modes which are observed on the Sun. A
model of stochastic excitation by turbulent convection has been developed to
compute the excitation rates, and it has been successfully applied to solar
radial modes (Samadi & Goupil 2001, Belkacem et al. 2006b). We generalize this
approach to the case of non-radial global modes. This enables us to estimate
the energy supplied to high-() acoustic modes. Qualitative arguments as
well as numerical calculations are used to illustrate the results. We find that
non-radial effects for modes are non-negligible:
- for high- modes (i.e. typically ) and for high values of ;
the power supplied to the oscillations depends on the mode inertia.
- for low- modes, independent of the value of , the excitation is
dominated by the non-diagonal components of the Reynolds stress term. We
carried out a numerical investigation of high- modes and we find that
the validity of the present formalism is limited to due to the
spatial separation of scale assumption. Thus, a model for very high-
-mode excitation rates calls for further theoretical developments, however
the formalism is valid for solar modes, which will be investigated in a
paper in preparation.Comment: 12 pages, accepted for publication in A&
Period spacings in red giants I. Disentangling rotation and revealing core structure discontinuities
Asteroseismology allows us to probe the physical conditions inside the core
of red giant stars. This relies on the properties of the global oscillations
with a mixed character that are highly sensitive to the physical properties of
the core. However, overlapping rotational splittings and mixed-mode spacings
result in complex structures in the mixed-mode pattern, which severely
complicates its identification and the measurement of the asymptotic period
spacing. This work aims at disentangling the rotational splittings from the
mixed-mode spacings, in order to open the way to a fully automated analysis of
large data sets. An analytical development of the mixed-mode asymptotic
expansion is used to derive the period spacing between two consecutive mixed
modes. The \'echelle diagrams constructed with the appropriately stretched
periods are used to exhibit the structure of the gravity modes and of the
rotational splittings. We propose a new view on the mixed-mode oscillation
pattern based on corrected periods, called stretched periods, that mimic the
evenly spaced gravity-mode pattern. This provides a direct understanding of all
oscillation components, even in the case of rapid rotation. The measurement of
the asymptotic period spacing and the signature of the structural glitches on
mixed modes are then made easy. This work opens the possibility to derive all
seismic global parameters in an automated way, including the identification of
the different rotational multiplets and the measurement of the rotational
splitting, even when this splitting is significantly larger than the period
spacing. Revealing buoyancy glitches provides a detailed view on the radiative
core.Comment: Accepted in A&
The effects of moderately fast shellular rotation on adiabatic oscillations
We investigate adiabatic oscillations for delta Scuti star models, taking
into account a moderate rotation velocity ~100 \km/s. The resulting oscillation
frequencies include corrections for rotation up to second order in the rotation
rate including those of near degeneracy. Effects of either a uniform rotation
or a rotation profile assuming local angular momentum conservation of the form
Omega=Omega(r) on oscillation frequencies are compared. As expected, important
differences (around 3 microHz) are obtained in the and mixed mode regions.
For higher frequency p modes, differences range between 1 microHz and 3
microHz. Such differences are likely to be detectable with future space
missions such as COROT, where precisions in frequency around 0.5 microHz will
be reachable.Comment: A&A, in press (18 pag, 14 fig
- …