Asteroseismology allows us to probe the physical conditions inside the core
of red giant stars. This relies on the properties of the global oscillations
with a mixed character that are highly sensitive to the physical properties of
the core. However, overlapping rotational splittings and mixed-mode spacings
result in complex structures in the mixed-mode pattern, which severely
complicates its identification and the measurement of the asymptotic period
spacing. This work aims at disentangling the rotational splittings from the
mixed-mode spacings, in order to open the way to a fully automated analysis of
large data sets. An analytical development of the mixed-mode asymptotic
expansion is used to derive the period spacing between two consecutive mixed
modes. The \'echelle diagrams constructed with the appropriately stretched
periods are used to exhibit the structure of the gravity modes and of the
rotational splittings. We propose a new view on the mixed-mode oscillation
pattern based on corrected periods, called stretched periods, that mimic the
evenly spaced gravity-mode pattern. This provides a direct understanding of all
oscillation components, even in the case of rapid rotation. The measurement of
the asymptotic period spacing and the signature of the structural glitches on
mixed modes are then made easy. This work opens the possibility to derive all
seismic global parameters in an automated way, including the identification of
the different rotational multiplets and the measurement of the rotational
splitting, even when this splitting is significantly larger than the period
spacing. Revealing buoyancy glitches provides a detailed view on the radiative
core.Comment: Accepted in A&