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ABSTRACT

We investigate adiabatic oscillations for δ Scuti star models, taking a moderate rotation velocity (around 100 km s−1) into account. The resulting
oscillation frequencies include corrections for rotation up to second order in the rotation rate including those of near degeneracy. Effects of
either a uniform rotation or a rotation profile assuming local angular momentum conservation of the form Ω = Ω(r) on oscillation frequencies
are compared. As expected, important differences (around 3 µHz) are obtained in the g and mixed-mode regions. For higher-frequency p modes,
differences range between 1 µHz and 3 µHz. Such differences are likely to be detectable with future space missions such as COROT, where
precisions in frequency around 0.5 µHz are expected to be reached.

Key words. stars: variables: δ Sct – stars: rotation – stars: oscillations – stars: interiors – stars: fundamental parameters – stars: evolution

1. Introduction

Intermediate mass stars are characterized by a convective core
and a radiative envelope. As representative of such stars,
δ Scuti stars are located in the lower part of the Cepheid in-
stability strip, with spectral types from A2 to F0. Such pul-
sating stars seem particularly suitable for determining the ex-
tent of the convective core and internal rotation rates, and thus
for better understanding the hydrodynamical processes taking
place in stellar interiors. Particularly, balance between rotation-
ally induced turbulence and meridional circulation generates
the mixing of chemicals and redistribution of angular momen-
tum (Zahn 1992), which then affects the rotation profile and the
evolution of the star. It is expected that intermediate mass stars
do not rotate uniformly as a solid body. Zahn (1992) proposed
that, as a result of strong anisotropic turbulence, the stellar ro-
tation profile is shellular, i.e. the star is divided in differentially
rotating concentric shells.

The δ Scuti stars can be found in two main evolutionary
stages: on the main sequence, where they burn hydrogen in
their convective cores, and before the sub-giant phase, when
burning hydrogen in shells. They can be evolved enough to
present a strong gradient of chemical composition, produced by
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their shrinking convective core. These types of structures gen-
erate particular modes, showing a dual behavior. These modes
are known as mixed modes, which behave like pressure modes
(p modes) at surface and like gravity modes (g modes) toward
the center (Christensen-Dalsgaard 1998). Indeed, they can pen-
etrate sufficiently deep toward the center of the star and at the
same time show amplitudes at the surface that are large enough
to be detected. The existence of such modes can thus be very
important when investigating deep interiors of stars.

In past decades, there have been extensive efforts to develop
observational seismology for δ Scuti stars, for instance the
world-wide observational campaigns (Breger 2000; Handler
2000) or the STEPHI network (Michel et al. 2000). However,
several observational aspects of the pulsating behavior within
the instability strip are not fully understood (see Templeton
et al. 1997). Due to the complexity of the oscillation spectra
of δ Scuti stars, the problem of identifying modes remains un-
solved. As δ Scuti stars are commonly fast rotators (100 <
v sin i < 200 km s−1), additional uncertainties to their already
complex oscillation spectra arise from the effect of rapid ro-
tation. Rotation alters the internal structure of a star through
a modified hydrostatic balance and, probably more important,
through mixing caused by circulation and/or instabilities in-
duced by rotation (Zahn 1992; Maeder & Meynet 2000; Heger
et al. 2000). Furthermore the simple characteristic pattern of
symmetric multiplets split by rotation is broken. In the frame-
work of a perturbation analysis, second-order effects induce
strong asymmetries in the splitting of multiplets (Saio 1981;
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Dziembowski & Goode 1992, hereafter DG92) and frequency
shifts that cannot be neglected even for radial modes (Soufi
et al. 1995).

In DG92, the authors propose a second-order formalism to
study the eigenfunctions for the Sun and δ Scuti stars, with both
radial and latitudinal rotation, which takes into account the ef-
fects of near degeneracy up to the first order in the rotation
rate. For medium-high rotators, like δ Scuti stars, the effects
of near degeneracy up to the second and third orders cannot
be neglected (see Dziembowski & Goode 1992; Goupil et al.
2000). This last point is included in a complete third-order for-
malism given by Soufi et al. (1998, hereafter SGD98). Near
degeneracy affects the asymmetry of multiplets, making the in-
terpretation of observed oscillation spectra even more difficult.
Based on this approach, assuming a uniform rotation for the
sake of simplicity, theoretical and quantitative studies on the
oscillations have followed of rotating δ Scuti stars (Goupil et al.
2000; Goupil & Talon 2002; Daszyńska-Daszkiewicz et al.
2002; Pamyatnykh 2003), of solar-like stars (Dziembowski
& Goupil 1998; Goupil et al. 2004), and of β Cephei stars
(Daszyńska-Daszkiewicz et al. 2003). SGD98’s work has been
recently revisited and applied to the study of oscillations of
β Cephei stars (Karami et al. 2005, in press).

The present work focuses on the magnitude of the effect of
shellular rotation on the adiabatic oscillations of a 1.8 M� star.
In order to avoid possible interferences between the third-order
effects of rotation on oscillations and those coming from shel-
lular rotation, only second-order terms are considered. To do
so, we built a numerical code (Suárez 2002) taking a complete
formalism up to the second order into account in the presence
of a shellular rotation Ω = Ω(r).

Theoretical oscillation spectra computed for two different
models of δ Scuti star are compared: one model was evolved
assuming uniform rotation (global conservation of the angular
momentum), and another model was evolved assuming a shel-
lular rotation (local conservation of the angular momentum).
The impact of a shellular rotation on oscillation frequencies is
discussed in the frame of the future space experiment COROT
(launch in 2006).

The paper is organized as follows: Sect. 2 briefly recalls
the basis of the second-order perturbation formalism of non-
degenerate oscillation frequencies. Section 3 describes near-
degeneracy theory as implemented in our oscillation code. In
Sect. 4 the adopted methodology is detailed. Section 5 dis-
cusses the results and finally conclusions are given in Sect. 6.

2. Non-degenerate oscillation frequencies
corrected for rotation effects

Following DG92, when Coriolis and centrifugal forces are con-
sidered, the eigenfrequency ω and associated eigenfunctions ξ
must satisfy the following oscillation equation:

L0ξ − ρ0ω̂
2ξ − 2ρ0ω̂ΩKξ + (L2 − ρ2ω̂

2) ξ = 0, (1)

where ω̂ = ω + mΩ and K = iez× (SGD98, Eq. (22)). The
linear operators L0 and L2 correspond to L0 and L2 defined
in SGD98 (Eqs. (23) and (24)), respectively. The mean density

of the pseudo rotating model is represented by ρ0. Likewise,
its perturbation by the non-spherically symmetric component
of the centrifugal force is given by the following expansion in
Legendre polynomials

ρ2 = p22(r) P2(cos θ), (2)

where p22(r) is defined in SGD98 (Eq. (15)). With appropri-
ate boundary conditions, Eq. (1) forms an eigenvalue problem
(Appendix A). The eigenfunction ξ is written as

ξ = ξ0 + ξ1, (3)

where ξ0 and ξ1 correspond to the non perturbed and first-order
perturbed eigenfunctions, respectively, defined as:

ξ0 = r
[
y01Ym

� er + z0∇HYm
�

]
(4)

ξ1 =
2mΩ̄
ω0

r
[
y1Ym

� er + z1∇HYm
�

+ τ�+1 er × ∇HYm
�+1 + τ̂�−1 er × ∇HYm

�−1

]
, (5)

where the notations are the same as in SGD98. In these ex-
pressions, y01 and z0 represent the normalized radial and hor-
izontal components, respectively, of the eigenfunction for the
fluid displacement (Unno et al. 1989). Similarly, the first-order
corrections are represented by y1 and z1, respectively (see
Appendix A.1).

The eigenfrequency associated with each mode is thus la-
beled with the subscripts n, �,m representing, respectively, the
radial order, degree, and azimuthal order of the correspond-
ing spherical harmonics. The temporal dependence is chosen
with the form exp(iωt), so that prograde modes correspond to
m < 0. Following DG92, oscillation frequencies are obtained
by means of a perturbative method taking up to second or-
der effects of rotation into account. Equilibrium and oscillat-
ing quantities are expanded with respect to ε = Ωσ/ω and
µ = Ω/σ, where σ is the dimensionless mode frequency de-
fined as σ = ω/(GM/R3)1/2; R and M represent the stellar ra-
dius and the mass of the model respectively.

Ignoring the resonant interaction due to near degeneracy in
this section, the frequency of a given rotationally split multiplet
of degree � and radial order n can be written as:

ωm = ω0 + ω1,m + ω2,m, (6)

where the subscripts n, � have been omitted. The ωm frequen-
cies are obtained by means of a perturbative method. The
zeroth-order contribution, ω0, represents the mode frequency
with all effects of rotation ignored except that of the horizon-
tally averaged centrifugal force in the equilibrium model (later,
we will abusively refer to it as the “non perturbed” frequency).
The other two terms, ω1,m and ω2,m, represent the first- and
second-order corrections.

A shellular rotation is considered with a rotation profile
defined as

Ω(r) = Ω̄ [1 + η0(r)], (7)
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where Ω̄ represents the rotation frequency at the stellar surface.
In this context, the first- and second-order frequency correc-
tions are written as:

ω1,m = m Ω̄ (CL − 1 − J0) (8)

ω2,m =
Ω̄2

ω0

(
D0 + m2D1

)
. (9)

The Ledoux constant, CL, that determines the usual equidistant
splitting valid in the limit of slow rotation, is given by the well-
known integral expression

CL =
1
I0

∫ R

0

[
2y01z0 + z0

2
]
ρ0 r4 dr, (10)

where I0 is the term of inertia given by:

I0 =

∫ R

0

[
y01

2 + Λz0
2
]
ρ0 r4 dr, (11)

with Λ = �(� + 1). In Eq. (8), J0 represents an additional
contribution in the case of shellular rotation and is given by:

J0 =
1
I0

∫ R

0
η0(r)

[
y01

2 + Λz0
2 − 2y01z0 − z0

2
]
ρ0 r4 dr. (12)

The second-order coefficients D0 and D1 in Eq. (9) take into
account the non-spherically symmetrical distortion due to the
centrifugal force. The symmetry of split multiplets is broken by
the m2 dependency (see Eq. (9)). For later use, we also rewrite
these coefficients in Saio’s notation:

D0 ≡ X1 + X2 D1 ≡ Y1 + Y2. (13)

Comparing Eq. (9) with the formulation given in DG92, the
following relations are obtained:

ω0

(
Ω̄

ω0

)2

(X1 + m2Y1) = ωT
2 + ω

I
2 +

ω2
1

2ω0
+ ωP

2 (14)

for X1 and Y1 and

ω0

(
Ω̄

ω0

)2

(X2 + m2Y2) = ωD
2 (15)

for X2 and Y2. The analytic expressions for Xi and Yi are
given in Appendix B. The terms ωT

2 , ωI
2, and ωP

2 , defined by
Eqs. (16)−(19) in DG92, represent the different contributions
to second-order frequency corrections in the absence of de-
generacy effects and, as in SGD98, include the effect of the
symmetrical component of the centrifugal force on the equi-
librium model: ωP

2 and ωT
2 represent the poloidal and toroidal

components of the frequency, respectively, obtained from the
first-order correction to the eigenfunction; ωD

2 corrects for the
effects of the centrifugal force on the stellar structure.

3. Near-degenerate oscillation frequencies

The perturbation method presented in the previous section as-
sumes that the non-perturbed eigenmode can be represented
with one single spherical harmonic. This is no longer valid
in the case of near-degenerate frequencies, i.e. when two or
more frequencies are close to each other (ωnlm ∼ ωnlm′ ).
Consequently, the perturbation method must be modified in or-
der to include corrections for near degeneracy as done in the
next sections.

3.1. The oscillation equation in presence
of degeneracy

The formalism is similar for 2 or 3 near-degenerate modes. For
the sake of simplicity, it is illustrated below for two modes a
and b. The a and b subscripts represent (n, �,m)a and (n, �,m)b,
respectively. For near degenerate mode a and mode b, it is
convenient to define:

ω̄0 =
ω0,a + ω0,b

2
(16)

δω0 = ω0,a − ω0,b. (17)

The eigenfrequency and the eigenfunction of a near-degenerate
mode are then assumed to be of the form:

ω = ω̄0 + ω̃1 + ω̃2 (18)

ξ =
∑
j=a,b

α j(ξ0, j + ξ1, j). (19)

First and second-order corrections to the eigenfrequency in the
presence of near degeneracy are represented by ω̃1 and ω̃2,
respectively; ξ0, j and ξ1, j are the non perturbed and first-
order perturbed eigenfunctions defined in Eqs. (4) and (5),
respectively.

Let us now replace ω and ξ by Eqs. (18) and (19) in the
oscillation equation (Eq. (1)). Perturbation is then performed
keeping in mind that δω0 is small, of first or second order in the
rotation rate, i.e. δω0 ∼ O(Ω) or δω0 ∼ O(Ω2). Projecting onto
the non-perturbed eigenfunctions ξ0,a and ξ0,b, the following
system is obtained:

∑
j=a,b

⎡⎢⎢⎢⎢⎣M(1)
jk +M(2)

jk +
δω0

2
I−1 +

δω2
0

8ω̄0
I1

⎤⎥⎥⎥⎥⎦ α j = 0 (20)

for k = a, b. In this equation we have defined the unit matrix I1

and also the matrix I−1 as:

I−1 =

(
1 0
0 −1

)
. (21)

The first- and second-order matrixM jk terms are given by:

M(1)
jk =

( −ω̃1 + ω1, j ω1, jk

ω1,k j −ω̃1 + ω1,k

)
(22)

M(2)
jk =

( −ω̃2 + µ j µ jk

µk j −ω̃2 + µk

)
, (23)

where we have defined:

µ j = − ω̃1

ω0, j

(
ω̃1

2
− ω1, j

)
+ ωD

2,j + ω
P
2, j + ω

T
2, j + ω

I
2, j (24)

µ jk = ω̃1
ω1, jk

ω0,k
+ ωD

2, jk + ω
P
2, jk + ω

T
2, jk + ω

I
2, jk. (25)

Terms with one single subscript are not affected by near degen-
eracy and are defined in Sect. 2. Coupling terms for degener-
acy are included in ω1, jk and µ jk; they are defined with double-
subscript terms and their definitions and detailed expressions
are given in Appendix C.
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3.2. Selection rules

Corrections for near degeneracy exist only for modes with
degrees � and azimuthal orders m fulfilling specific selection
rules:

• Analysis of ω1,ab (Eq. (C.7)) shows that frequency correc-
tions for near degeneracy already arise at first order when-
ever the modes have same degree � and same azimuthal
order m, i.e. �a = �b and ma = mb. The modes then differ
only by their radial orders na � nb.
• Near degeneracy affects second-order frequency correc-

tions of near-degenerate frequencies (see Appendix C)
whenever �a = �b or �a = �b ± 2 and ma = mb. These selec-
tion rules are also obtained in the case of the compound
third-order treatment given by SGD98. Equation (20) is
then solved for j = a and k = b for each case allowed
by the selection rules.

For two near-degenerate modes, a and b, the proximity in
frequency is expected to be less than or equal to the rota-
tion frequency of the stellar model (|ωa − ωb| � Ω or Ω2/ωa)
depending on the degrees and azimuthal orders of the modes.
This estimate may vary with the nature of the modes (g, p,
or mixed modes). For stellar models of interest here, numeri-
cal applications reveal that many modes have near-degenerate
frequencies.

3.3. First-order near degeneracy

In this case δω0 is O(Ω). Only modes a and b with �a = �b

modes are affected. Such a situation generally concerns only a
few modes that are in avoided crossing. We find the first-order
correction to the frequency as the condition for the existence of
non-trivial solutions of Eq. (20):(
−ω̃1 + ω1,a +

δω0

2

)(
−ω̃1 + ω1,b − δω0

2

)
−W1,ab = 0, (26)

where

W1,ab = ω1,ab ω1,ba. (27)

In the case of two degenerate modes, this system is equivalent
to Eqs. (59), (60) in DG92. Conditions for non-trivial solutions
give the first-order frequency corrections in presence of near
degeneracy

ω̃1 =
ω1,a + ω1,b

2
±

√
H1,ab, (28)

with

H1,ab =

(ω1,a − ω1,b

2
+
δω0

2

)2
+W1,ab. (29)

Note that, in the case of negligible near degeneracy, that is,
when 4ω2

1,ab � (ω1,a − ω1,b − δω0)2, the non-degenerate ω1,a

and ω1,b frequencies are retrieved. The second-order near-
degenerate frequency correction is again obtained as the condi-
tion for a non-trivial solution of Eq. (20):⎛⎜⎜⎜⎜⎝νa + µa − ω̃2 +

δω2
0

8ω̄0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝νb + µb − ω̃2 +

δω2
0

8ω̄0

⎞⎟⎟⎟⎟⎠ −W2,ab = 0 (30)

where we have defined

W2,ab = (ω1,ab + µab)(ω1,ba + µba) (31)

and

νb =

(
− ω̃1 + ω1,b − δω0

2

)
(32)

with ω̃1 given by Eq. (26). Equation (28) provides two first-
order solutions, ω̃+1 and ω̃−1 . Four possible solutions for ω̃2 are
thus obtained. Although all of them are mathematically valid,
only two have a physical meaning. Each second-order solution
ω̃2 = ω̃+2 and ω̃−2 is associated to one and only one first-order
solution ω̃−1 and ω̃+1 , respectively. We then obtain:

ω̃2 =

⎛⎜⎜⎜⎜⎝νb + νa

2
+
µb + µa

2
+
δω2

0

8ω̄0

⎞⎟⎟⎟⎟⎠ ±
√
H (1)

2,ab, (33)

where

H (1)
2,ab = h(ν, µ)2

a,b +W2,ab (34)

with

h(ν, µ)a,b =
(νa + µa) − (νb + µb)

2
· (35)

3.4. Second-order near degeneracy

In this case, δω0 is O(Ω2), ω̃1 = ω1, and ω1, jk = 0 in Eq. (24).
The quantity µ j in Eq. (25) is then ω2 j, as defined in Eq. (9).
Only modes with �a = �b ± 2 are concerned. The analytic ex-
pression of second-order frequency corrections is obtained as
the condition for existence of non-trivial solutions for
∑
j=a,b

α j

[
M jk

(2) +
δω0

2
I−1

]
= 0. (36)

We then obtain

ω̃2 =

(
µb + µa

2

)
±

√
H (2)

2,ab, (37)

where

H (2)
2,ab =

(
µb − µa

2
− δω0

2

)2
+ µab µba. (38)

When near degeneracy is negligible, 4µabµba � (µa − µb +

δω0)2, and the non-degenerate solutions µa = ω2a and µb = ω2b

are respectively retrieved.
Our numerical computations suggest that for rapid enough

rotations, every pair of modes having ∆ � = ±2 with radial or-
ders n and n − 1, respectively, should present frequencies that
are near enough to be coupled. For pairs with � = 0, 2, coupling
is more significant for high radial order modes.

4. Evolutionary models

Equilibrium stellar models have been computed with the evo-
lution code CESAM. Following the approach described in
Kippenhahn & Weigert (1990), equilibrium models are con-
structed by modifying the stellar structure equations so as to
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include the spherical symmetric contribution of the centrifugal
acceleration, by means of an effective gravity:

geff = g −Ac(r), (39)

where g is the local gravity component at a radial distance r

g = G
m(r)
r2

, (40)

with m(r) the spherical mass at radius r, G the gravitational
constant. AndAc(r) corresponds to the centrifugal acceleration
at radius r:

Ac(r) =
2
3

rΩ2(r). (41)

This spherically symmetric contribution of the rotation does
not change the shape of the hydrostatic equilibrium equation.
This is not fully representative of the structure of a rotating star.

First, the non-spherical component of the deformation of
the star is not considered. However, its effects are included
through a perturbation in the oscillation equations (see previ-
ous sections). Second, rotationally-induced mixing and trans-
port of angular momentum can significantly modify the rota-
tion profile (Talon et al. 1997; Maeder & Meynet 2000; Heger
et al. 2000; Denissenkov & Tout 2000; Palacios et al. 2003).
As these processes are not included in our models, we consider
here two illustrative cases when prescribingΩ(r).

No mass loss is considered at any evolutionary stage, that
is, the total angular momentum is assumed to be conserved.
In this framework, the two assumptions for the transport of
the angular momentum are: 1) either instantaneous transport
of angular momentum in the whole star (global conservation),
which thus yields a uniform rotation; or 2) for sake of simplic-
ity and illustrative purpose, local conservation of the angular
momentum (shellular rotation). Formally, the local conserva-
tion of angular momentum between two instants (t2 > t1) can
be expressed as:

2
3

r2
1(m)Ω1(m) =

2
3

r2
2(m)Ω2(m), (42)

where m is the Lagrangian abscissa coordinate. Rotation in the
convective core is considered to be rigid. As shown by Eq. (39),
gravity is modified by the radial term of the centrifugal acceler-
ationAc (see Eq. (41)). In Fig. 1,Ac is displayed as a function
of the radius for both cases (uniform and shellular rotation).
The radial distance r = 0.1 R corresponds to a local maximum
that is the limit of the convective core. This implies a modifica-
tion of the local density, particularly in such regions.

In Fig. 2, evolutionary tracks for a 1.8 M� model com-
puted with three different assumptions: uniform rotation (JG),
shellular rotation (JL), and absence of rotation (Ω = 0). Two
evolutionary stages are labeled: the zero-age main sequence
(A, AJ and AL models) and on the main sequence (B, BJ and
BL models). Fundamental stellar parameters of these models
are given in Table 1. During the main sequence evolution of
the star, the rotation profile along the stellar radius mainly re-
sults from 1) the contraction of the core and 2) the expansion of
the outer layers. Then the local moment of inertia of contract-
ing shells of a given elementary mass decreases. Therefore, the

Fig. 1. Radial component of the centrifugal acceleration for a differ-
entially rotating stellar model with JL (continuous line) and a uniform
rotating one with JG (dashed line) considered in the present study.
These quantities are displayed for a 1.8 M� model, aged 1050 Myr
with a photometric radius of R = 2.27 R�.

Fig. 2. Evolutionary tracks of 1.8 M� models representative of a typ-
ical δ Scuti star. The three tracks correspond to: a uniform rotating
model (dashed line), a shellular rotating model (continuous line), and
finally a non-rotating model (dash-dotted line). The box represents
typical observational errors for δ Scuti stars.

Table 1. Characteristics of the three 1.8 M� models considered in
Fig. 2. From left to right, Ωs represents the surface rotation frequency,
Teff the effective temperature, Xc the central hydrogen fraction, and ρ̄
the mean density. Two evolutionary stages are considered: the zero
age main sequence (A) and a main sequence age of 1050 Myr (B). A
solar metallicity, a mixing length parameter of αML = 1.614, and an
overshooting parameter of dov = 0.2 have been assumed.

Model Ωs R log Teff Xc ρ̄

(µHz) (R� ) (K) (g cm−3)

AL 15.485 1.824 3.870 0.726 7.308

AG 10.902 1.800 3.873 0.726 7.555

A0 0 1.795 3.876 0.726 7.927

BL 9.980 2.271 3.888 0.318 2.839

BG 9.757 2.275 3.888 0.315 2.827

B0 0 2.242 3.892 0.312 3.939
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Fig. 3. Rotation frequency through the star normalized to its surface
value. The rotation profiles correspond to the BL model (curved line,
shellular rotation) and the BG model (horizontal line, uniform rota-
tion), respectively. Models are built with the same surface rotation
frequency Ωs = 9.98 µHz. For more details see Sect. 4.

local rotation frequency of those shells must increase in order
to conserve the angular momentum locally. Consequently, the
rotation frequency toward the surface decreases during the evo-
lution of the star (see Fig. 3). This figure shows a strong gradi-
ent of the rotation frequency toward the center. At a height of
r = 0.2 R the rotation rate is Ω = 1.5Ωs with Ωs the surface
rotation rate. In our model, this means a rotation frequency
around 14.97 µHz at r = 0.2 R, while a rotation frequency
of 23.78 µHz is obtained at the limit of the convective core
(r ∼ 0.1 R). Oscillation modes with amplitude in these regions
(typically g and mixed modes) are expected to be sensitive to
shellular rotation. In practice, observations provide the surface
velocity (most often through the v sin i parameter). In order to
reproduce such conditions, models BL and BG were evolved so
as to obtain the same rotation velocity at the surface. The first
one (BL) was evolved considering the assumption of local con-
servation of the angular momentum. The second one (BG) has
been evolved under the assumption of uniform rotation (global
conservation of the angular momentum).

5. Effects of shellular rotation on oscillation
frequencies

Oscillation frequencies of a rotating star are obtained from
Eq. (6). For the sake of clarity and brevity, the following
nomenclature will be used:ωL

0 andωG
0 for zeroth order frequen-

cies, ωL
1 and ωG

1 for first-order frequency corrections, and fi-
nally ωL

2 and ωG
2 for second-order frequency corrections. The L

and G superscripts follow the same nomenclature adopted for
the models BL and BG. Similarly, differences in frequency for
a given mode (given n, �,m subscripts) between two models
will be denoted as ∆ω j = ωL

j − ωG
j for j = 0, 1, 2 associ-

ated with zeroth-order frequencies, first- and second-order fre-
quency corrections, respectively.

It is found that the behavior of frequency corrections does
not significantly change for low � degree values (� ≤ 3) when a

uniform or a shellular rotation profile is assumed. We therefore
focus on � = 1 modes in this section.

In the following sections, the analysis and discussion of the
effect of shellular rotation on oscillation frequencies include
very high-order p modes. The reader should notice that such
modes present a low probability of being observed (even from
space) due to their expected small amplitudes. Even so, from
a theoretical point of view, investigation of the frequencies of
these modes – i.e. with well-defined (asymptotic) behavior – is
helpful for the overall interpretation of the oscillation spectrum.

5.1. Zeroth-order frequency corrections

Perturbing and linearizing the hydrodynamical equations about
a pseudo-rotating model yield an eigenvalue system: see
Eq. (A.5) in Appendix A for more details. Our numerical
oscillation code is adapted to solve this system, with the
boundary conditions specified in Eqs. (A.16)−(A.19) and a
radial shellular rotation profile included in Eq. (7). The res-
olution of this system yields the zeroth order frequency ω0.
The use of pseudo-rotating models described in Sect. 4 pro-
vides zeroth-order eigenfrequencies that include the effects
of the spherically symmetric perturbation of pressure, den-
sity, and gravitational potential. These perturbations are in-
duced by the spherically symmetric component of the centrifu-
gal acceleration (see SGD98). Eigenmodes of this system are
still m degenerate.

Oscillation frequencies are thus computed for the BL and
BG models described in Sect. 4. In order to quantify the effect of
shellular rotation on zeroth-order frequencies, ∆ω0 = ω

L
0 − ωG

0
differences are calculated. These differences are shown for � =
1 modes in Fig. 6 (solid line) as a function of the radial order n
of the mode. As can be seen, the effect of shellular rotation on
zeroth-order frequencies is very small at low frequencies and
increases with the radial order n.

For high radial order p modes (n ≥ 12), the differ-
ences ∆ω0 are larger than differences from higher-order correc-
tions ∆ω1,∆ω2, (Sects. 3.3, 3.4) and hence become the most
sensitive to the effect of shellular rotation. Numerical tests
show that the differences ∆ω0 mainly come from the differ-
ences in the pseudo rotating models, BL, BG; the contribution
of the rotation profile (either uniform or shellular ) in the oscil-
lation equations is negligible.

As an order of magnitude, for � = 0, n ∼ 10−15 modes,
we consider the slope, νa (ν = ω/2π), of the variation of the
differences (ν0,n+1,�=0,0 − ν0,n,�=0,0) with the radial order n (in
the asymptotic approximation). We find numerically that ∆νa =

(νL
a −νR

a ) ∼ 0.175 µHz for νa ∼ 47 µHz; i.e. a relative difference
∆νa/νa ∼ 3.7 × 10−3. This difference can be accounted for by
the fact that our BL and BG models have slightly different radii,
∆R/R = (RL − RG)/RL = −1.76 × 10−3 (see Table 1). This
induces a contribution to ∆νa that can be quantified as:

∆νa

νa
= −3

2
∆R
R
∼ 2.6 × 10−3. (43)

Hence, in the present case, quite large differences, ∆ω0, at high
frequency come from structural properties of the two models
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Fig. 4. First a) and second b) order frequency corrections ν = ω/2π
for � = 1 modes as a function of the radial order n. Finally, both
contributions ω1+ω2 are displayed in panel c). Empty and filled circles
represent frequency corrections computed in the cases of uniform and
shellular rotation, respectively.

through differences in their structural variables (pressure, den-
sity perturbations, etc.) rather than from differences in the wave
propagation properties that appear as additional extra terms in
the oscillation equations (see Appendix A).

5.2. First-order frequency corrections

In Fig. 4a, the first-order frequency correctionsω1 (Eq. (8)) are
represented as a function of the radial order n. This figure can
be seen seen as composed of two domains: a first one (n ≤
5) containing g modes and mixed modes (hereafter gp modes
region) and a p-mode region (n > 5). As expected, modes in
gp region are more affected by shellular rotation than those in
the p-mode region.

In Fig. 6, the frequency correction differences, ∆ω1 =

ωL
1 − ωG

1 , are represented as a function of their radial order
n for � = 1 modes. These differences assess the effect of as-
suming a shellular rotation instead of uniform rotation. In the
region of gp modes, the effect of shellular rotation can reach
up to 3 µHz for a few modes. For high radial order n, differ-
ences ∆ω1, although smaller than for gp modes, are significant
and remain quite stable around 1 µHz. These results can be ex-
plained by analyzing the contribution of shellular rotation to ω1

corrections (Eqs. (8), (10), and (12)), which arises from:

1) the effect of Ω(r) on the zeroth-order eigenfunctions y01

and z0 (corresponding to the radial and horizontal displace-
ments, respectively) appearing in CL and J0 terms. Those
eigenfunctions are obtained by solving the eigenvalue sys-
tem, taking into account a shellular rotation, Ω(r), given
in Appendix A (Eqs. (A.1)−(A.4)). The importance of this
effect can be measured with the weighted function f as
defined by

f (r) = ρ r4y2
01, (44)

where y01 represents the radial displacement eigenfunction;
2) the explicit contribution of the rotation profile η0 in J0

(Eq. (12)). This latter term vanishes in the case of uni-
form rotation. For high-frequency p modes, the horizontal
component of the displacement is negligible (|y01| 	 z0)
and one has J0 ∼ 〈η0〉 where 〈·〉 is a weighted average
defined as:

〈·〉 ∼
∫ R

0
ρ r4y2

01 dr∫ R

0
ρ r4y2

01 dr
· (45)

In Fig. 5, the weighted function f (r) = ρ r4y2
01 and η0(r) f (r) are

then represented as functions of the radial distance r for a high
radial order p mode (Fig. 5b) and for comparison in Fig. 5a for
a mixed mode.

For gp modes, the eigenfunctions (as shown by f func-
tions in Fig. 4a) present an inner maximum near the core
r/R ∼ [0, 0.2]. As the kinetic energy of these modes are large
in core-close regions, large differences between the uniform
and the shellular rotation cases, i.e. in ∆ω1, are reasonably
expected.

For high radial-order p modes, the implicit effects of shel-
lular rotation on eigenfunctions fL are represented by dashed
lines and can be compared with fG for a uniform rotation.
Maximum amplitudes of such modes are located near the stel-
lar surface, and the eigenmodes do not differ much between
the uniform and the shellular cases. The main contribution to
the differences ∆ω1 = 1 µHz comes from the large increase
in the rotation rate toward the center, which is accounted for
by η0 in J0. Hence, negative values of J0 explain that ω1 abso-
lute values obtained in the case of a shellular rotation are lower
than those obtained when a uniform rotation is assumed as seen
in Fig. 4a.

5.3. Second-order frequency corrections

Second-order frequency corrections ω2 are found to be smaller
than the first-order frequency corrections except at large
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Fig. 5. Weighted y01 functions versus the radial distance r (normalized to the radius of the star R). Solid and dashed lines represent the f func-
tions computed for the BL model. Dash-dotted lines represent the f function (defined by Eq. (44)) computed for the BG model. Dotted lines
represent the rotation profile given by the radial function η0(r) (scale adapted for clarity). Panel a) shows f computed for the n = 2, � = 1 mixed
mode, while panel b) represents f computed for the n = 15, � = 1 p mode. In both plots, the corresponding shellular rotation profile (same as
Fig. 3) is also displayed.

frequency. They are presented in Fig. 4b for � = 1 modes, as
well as the sums (ω1 +ω2) as a function of their radial order n.
At low frequencies (n ≤ 5), ∆ω2 is comparable to the effect on
second-order corrections (∆ω0).

In the p-modes region, investigations of the individual
terms in Eq. (9) reveal that X2 and Y2 are clearly dominant in
that region. For given � = 1 centroid modes, ω2 can be writ-
ten as:

ω2(� = 1,m = 0) =
Ω̄2

ω0

[
XT

1 + XI
1 + X2

]
. (46)

In this expression, X2 is found to be dominant mainly due to its
ω0 dependence through the Ic term (see Eq. (B.8)). Neglecting
then XT

1 and XI
1 and considering X2(� = 1,m = 0), Eq. (46)

reduces to:

ω2(� = 1,m = 0) ∼ 2
5
Ω̄2

ω0
Jc. (47)

For m = ±1 modes, Y2 behaves like X2 but with opposite sign.
Similar to X2, the presence of Cω2

0 in Jc makes Y2 dominant
respect to Y1. Thus the shape of the m = ±1 branches shown in
Fig. 4b can be explained by the competition between X2 (posi-
tive) and Y2 (negative), yielding:

ω2(� = 1,m � 0) ∼ −1
5
Ω̄2

ω0
Jc. (48)

More generally, for high radial order (� � 0,m � 0) modes, one
has (see also DG92):

ω2,m ∼
(
Λ − 3 m2

)
4Λ − 3

Ω̄2

ω0
Jc. (49)

Unlike the first-order frequency corrections, the second-order
m � 0 branches are not symmetric with respect to m = 0
modes, and the asymmetry for a given � can be written as:

ω2,m + ω2,−m − 2ω2,0 = − 6m2

4Λ − 3
Ω̄2

ω0
Jc. (50)

For high radial order p modes, Jc is given to a good approxi-
mation by

Ic ∼ σ2
0〈S2〉, (51)

where σ2
0 = ω

2
0/(GM/R3) 〈S2〉 is a weighted average of pertur-

bations of structure (see Appendix B, Eq. (B.12)). Hence,

ω2(� = 1,m = 0) ∼ 2
5
Ω̄2

GM/R3
ω̄0〈S2〉, (52)

and the increase of ω2 with n clearly seen in Fig. 4b arises from
its ω0 dependence. In the gp-modes region, in contrast to pure
p modes, X1 and Y1 (more specifically XT

1 and YP
1 ) dominate

the structure rotational distortion effects given by X2 and Y2. In
that case, both effects 1) and 2) mentioned above contribute in
an intricate way.

The combination of both first- and second-order frequency
corrections in Fig. 4 is then found to be dominated by the ω2

behavior at high frequency, and as was the case for first-order
corrections, ωL

2 present absolute values higher than ωG
2 . At low

frequency (gp-modes region), a complicated behavior results
from both contributions (ω1 + ω2).

Figure 6 shows the frequency differences ∆ω2 = ω
L
2 − ωG

2 .
In general, ∆ω2 < ∆ω1 over the whole range of considered
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Fig. 6. Differences between oscillation frequencies ν = ω/2π given
in Fig. 4 as a function of their radial order n. Such differences are
displayed for the zeroth-order ∆ω0 = ω

L
0 − ωG

0 (represented by a con-
tinuous line); the first-order ∆ω1 = ω

L
1 −ωG

1 indicated by dashed lines,
and finally for second-order corrections ∆ω2 = ω

L
2 − ωG

2 represented
by dotted lines.

radial orders. In contrast to the first-order results, the effect of
shellular rotation on second-order frequency corrections (∆ω2)
is larger for p modes than for gp modes.

For high radial-order p modes, the second-order frequency
differences arise from:

∆ω2 ∼ Ω̄2

GM/R3

[
∆(ω0〈S2〉)

]
, (53)

with

∆(ω0〈S2〉) = ωL
0 〈S2〉L − ωG

0 〈S2〉G. (54)

As shown in Fig. 6, ∆ω0 increases with the radial order n in the
p-mode region. The effect of this increase is lowered in ∆ω2 by
the change of 〈S2〉, which itself is mainly due to the derivatives
of Ω(r) (i.e. b2, db2/dr).

For gp modes, the difference in ω0 between both models
is small (Fig. 6), and its contribution to ∆ω2 (Eq. (44)) is less
important. In this case, second-order effects of centrifugal and
Coriolis forces on the stellar structure are dominant through
terms in Jc proportional to:

r
du2

dr
, ru2, rb2. (55)

This is shown in equations describing the behavior of the pres-
sure and density distributions in the presence of radial shellu-
lar rotation (Eqs. (74)−(80) in DG92). Moreover, second-order

Fig. 7. a) Same as Fig. 6 but first- and second-order frequency cor-
rections have been included. Symmetric solid-line branches represent
from top to bottom, the differences for m = −1 and m = +1 mode fre-
quencies respectively. For m = 0 modes, differences are represented
by a dotted line. Finally, panel b) is equivalent to a), but the the correc-
tion for near degeneracy is included. In both panels, the shaded region
represents an indicative frontier between the region of g and gp modes
(left side) and p modes (right side).

effects of shellular rotation on the non-spherically symmetric
component of the gravitational potential φ22 are found to be
negligible, and u2 ∼ (1 + η2) in Eq. (B.8). Therefore, ∆ω2 dif-
ferences are dominated by the effect of Ω(r) (η0) and of its
derivatives (b2,...). As was the case of first-order corrections,
ωL

2 present absolute values that are higher than ωG
2 .

5.4. Full non-degenerate frequencies

Finally, the total effect of differential rotation up to the second
order on the frequency ∆ω is displayed in Fig. 7a. The largest
effects of shellular rotation on gp modes (up to ∼3.4 µHz) arise
for m = ±1 modes and are dominated by ∆ω1. In this region,
the effects on zeroth order frequencies are much smaller. In
contrast, for the p-modes region, ∆ω are dominated by ∆ω0 in-
creasing with the radial order n (see Sect. 5.1). Numerically, we
find differences up to 0.5 µHz for m = +1 modes. For m = −1
modes, effects up to 3 µHz are seen to be of about the same
order as those found for m = 0 modes.

As already mentioned, the efficiency of the transport of an-
gular momentum is modified by rotational mixing during the
evolution of the star. The effect of shellular rotation on oscilla-
tion frequencies is expected to be reduced (in preparation) due
to the smoothing of the variation of Ω/Ωs at the edge of the
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Fig. 8. Variation of ∆ν = ∆ω/2π with ∆ω = ∆ω0 + ∆ω1 + ∆ω2 as
a function of the rotation rate of the uniformly rotating convective
core normalized to the surface rotation rate Ω/Ωs = 1.2. The effect
of varying the rotation rate is shown for modes in gp- and p-mode
regions. The plots focus on (� = 1; m = 0,±1) modes for which ∆ω
gets a maximum value (see Fig. 7a); n = 3 modes in the gp domain
(panel a)),and n = 16 modes in the p-modes region (panel b).

convective core (see Fig. 3). In order to simulate such a situa-
tion, theoretical oscillation spectra for the model BL were com-
puted with core rotation rates in the range ofΩ/Ωs = [1.5, 1.2].
As expected, the major influence of such variations is found
for gp modes. The lower the rotation rate in the core, the lower
the effect of shellular rotation in this region (see Fig. 8a). For
the minimum rotation rate considered, |∆ω| ∼ 1.4 µHz for
m = −1 modes, and |∆ω| ∼ 1.5 µHz for m = +1 modes is
found. For p modes (see Fig. 8b), differences remain close to
those obtained for Ω/Ωs = 2.5 (used throughout the present
work).

5.5. Correcting for near degeneracy

Near degeneracy is taken into account as described in Sect. 3.
The oscillation frequency of near-degenerate modes are com-
puted according to Eqs. (18), (28), and (33) or Eqs. (18)
and (37). In Fig. 7b, ωL and ωG are represented for (�a, �b) =
(1, 3) degenerate pairs. Near degeneracy is considered here
for modes with |σa − σb| � Ωs/(GM/R3)1/2 ∼ 0.25 (i.e.
|νa − νb| ∼ 10 µHz here) corresponding to the surface rotation
frequency of BG and BL models (see Table 1). As can be noticed
for both models, modes in the gp region are clearly the most af-

fected by near degeneracy, with a few m = ±1 near-degenerate
modes within the range of n <∼ 8. This result was expected
since such modes are probably closer to each other than are
p modes. In order to quantify how the oscillation frequencies
are modified by near degeneracy, we define the coefficients C(1)

ab

and C(2)
ab composed for first- and second-order contributions,

where ab subscripts represent the two modes affected by near
degeneracy. According to the definitions in Eqs. (16)−(17), the
“+” sign is for mode a and the “–” sign is for mode b. In the
case of near-degenerate modes with the same degree �, the first-
and second-order coefficients are defined, respectively, as

C(1)
ab ≡ ω̃1 − ω1 ± ∆ω0

2
, C(2)

ab ≡ ω̃2 − ω2 −
∆ω2

0

8ω̄0
· (56)

In the case of two degenerate modes with different degrees �a =

�b ± 2, the first-order coefficient C(1)
ab = 0 (see Sect. 3) and

C(2)
ab ≡ ω̃2 − ω2 ± ∆ω0

2
· (57)

The full expression for the adiabatic oscillation frequencies can
be written as:

ω =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω0 +

[
ω1 + C(1)

ab

]
+

[
ω2 + C(2)

ab

]
if �a = �b

ω0 + ω1 +
[
ω2 +C(2)

ab

]
if �a = �b ± 2.

In Fig. 9, for degenerate pairs (�a, �b) = (0, 2) (left panel) and
for (�a, �b) = (1, 3) (right panel), the effect of near degeneracy is
assessed by C(2)

ab /ω0 as a function of the frequency for the cases
of uniform and shellular rotation. As explained above, for such
degenerate pairs, only the second-order degenerate coefficient
is nonnull. It can be shown that the dominant terms correspond
to ωD

2,ab and ωT
2,ab (Eqs. (C.14) and (C.11)). The first one takes

into account the distortion of the structure of the star through
the structure quantities d1 and its derivative d2 (Eq. (C20)). The
second one, ωT

2,ab corresponds to the toroidal component of
eigenfunctions. For the range of frequencies treated here, the
global effect remains small for high-frequency p modes with
respect to what is found in the gp-modes region, where ωD

2,ab

and ωT
2,ab are of the same order. This explains that differences

between differential and uniform rotation are mainly found for
gp modes. Such variations can represent a few percent of the
value of frequencies not corrected by near degeneracy. For
m = 0 modes, compensations of dominant terms turn out to
yield a smaller effect of near degeneracy for m = 0 modes
seen in Fig. 9 (left panel), compared to those with m � 0
(right panel). For modes in the high frequency p-mode region,
the near degeneracy effects shown in Fig. 9 can be studied in
the asymptotic approximation by analyzing individual terms
of Eq. (C.14) in Appendix C.3. This analysis reveals that for
large frequency p modes the small separation corresponding
to νn−1,� − νn,�+2 is small enough with respect to the rotation
rate of the star to degenerate all (�, � + 2) pairs. In this con-
text (asymptotic regime), near degeneracy contributes with a
slowly-increasing term with radial order, dominated by ωD

2,ab
(see details in Sect. C.3.1), which is given to a good approxi-
mation by

ωD
2,ab ∼

Ω̄2

GM/R3

24

7
√

5
ω̄0 〈S2〉, (58)
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Fig. 9. Effect of the second-order near-degenerate coefficients C(2)
ab /ωa and C(2)

ab /ωb as a function of the frequency (ν = ω/2π) for degenerate
pairs (�1, �2) = (0, 2) (left panel) and (�1, �2) = (1, 3) (right panel). Empty and filled circles represent degenerate coefficients in the cases of
uniform and shellular rotation, respectively.

for (�a, �b) = (0, 2) degenerate pairs and

ωD
2,ab ∼

Ω̄2

GM/R3

12
5

√
2
7
ω̄0 〈S2〉, (59)

for (�a, �b) = (1, 3) degenerate pairs. For high-frequency
p modes, C(2)

ab increases as ω̄0, so the ratio C(2)
ab /ω̄0 remains

nearly constant. Figure 9 also reveals that the behavior of the
C(2)

ab coefficients differs when differential or uniform rotation
is considered. These differences are found to be significant for
m � 0 degenerate modes and are mainly caused by differences
at zeroth order (ω0 in Eqs. (58) and (59)).

For modes with ∆� = 0 (for which C(1)
ab � 0), further infor-

mation can be obtained through the second-to-first order coef-
ficient ratio

q(2,1) =

∣∣∣∣∣∣∣
C(2)

ab

C(1)
ab

∣∣∣∣∣∣∣ · (60)

In the present case, such degenerate pairs (which represent
only a few marginal cases) are found for � = 2 and � = 3,
for which C(2)

ab ∼ C(1)
ab . When considering differential rotation,

mixed modes (n = −6...2) present slightly higher (from 1%
to 20%, in absolute value) second-order degenerate coefficients
than first order ones. Although the correction for near degen-
eracy is thus less important in the case of shellular rotation, it
cannot be neglected.

6. Discussion and conclusions

In the present work, adiabatic oscillation frequencies of stel-
lar models with intermediate mass have been computed, which

include the effects of rotation. Following the perturbation for-
malism of DG92 and SGD98, we built a numerical code that
provides adiabatic eigenfrequencies corrected up to the second
order in the rotation rate Ω allowing a radial dependence of
Ω = Ω(r). Two particular cases for the transport of the angular
momentum in stellar interiors are investigated: on the one hand,
an instantaneous transport of the angular momentum thus lead-
ing to a uniform rotation profile. On the other hand, a shellular
rotation profile Ω(r) is assumed and derived from the assump-
tion of local conservation of angular momentum. Our study was
focused on 1.80 M� equilibrium models of typical δ Scuti stars
with a surface rotation of 100 km s−1.

As mentioned in the introduction, the seismology of
A−F rapidly rotating stars faces many difficulties, among
which the most severe is probably mode identification (see re-
views Goupil et al. 2005; and Dupret et al. 2005, for δ Scuti star
and γ Dor stars, respectively). We stress that the present study
does not intend to solve the problem of mode identification,
which now begins to be handled with confidence using various
techniques (see Handler 2005, and references therein). In par-
ticular, diagnostics based on multicolor photometry (Garrido
et al. 1990) are employed nowadays for mode identification.
In the framework of the forthcoming space mission Corot, the
color photometric data from the exo-planet camera will pro-
vide very useful information for this task. In any case, whether
mode identification is successfully performed or not, calcula-
tion of models and associated oscillation frequencies as close
to reality as possible is necessary for a one-to-one frequency
comparison between observed and computed frequencies (i.e.
spectrum of frequency differences or frequency histograms).
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At that level, it is important to be able to compute frequen-
cies with different physical assumptions and assess their re-
spective effects for establishing possible seismic diagnostics.
The present study was done along these lines.

To estimate the numerical and theoretical uncertainties of
the computed eigenfrequencies, as well as the validity of the
adopted perturbation technique is not an easy task. Here we
have performed a one-to-one eigenfrequency comparison be-
tween eigenfrequencies computed with the present numerical
code and those computed with the Warsaw oscillation code
restricted to second-order perturbation frequency corrections.
This exercise also implies comparison of the different pertur-
bation techniques employed in each code. The input model for
both codes is the same, BG, with uniform rotation (Table 1).
The results show that differences less than 0.15 µHz are ob-
tained most often and are never larger than 0.5 µHz. Both oscil-
lation codes are different in their numerical schema, treatments
of boundary conditions, and other technical computation char-
acteristics. The adopted perturbation technique is also different
since in one case, the first-order frequency correction is explic-
itly calculated (present code), whereas in the other case, the
first-order effect of rotation is implicitly included in the eigen-
system. The results of the comparison thus give some estimate
of the precision of the frequencies computed here and give us
some confidence in their calculation.

Note also that triple-mode interaction occurs between three
modes such as �a = �b = �c − 2 or �a = � − b − 2 = �c − 2 in the
adopted perturbation formalism here, although only occasion-
ally. These triple-mode interactions correspond to a double-
mode interaction in the SGD98formalism since in this last one,
the case la = lb near degeneracy is implicitly included.

Big effects – up to 3 µHz – of shellular rotation compared
with a uniform rotation are observed in the low frequency re-
gion where gp modes are encountered. This is expected, as the
rotation profile varies rapidly in the inner layers at the edge of
the convective core where gp modes have large amplitudes.

In the case of higher frequency p modes, frequency differ-
ences up to 3 µHz are predicted between a uniform and a shel-
lular rotation. This is due to the structure deformation caused
by the centrifugal force, which mainly affects the zeroth-order
oscillation frequencies.

It is found that the impact of reducing artificially the
core rotation rates of models by 50% principally affects those
gp modes for which the effects shellular rotation are drasti-
cally reduced to 0.6−1 µHz. In addition, the frequency changes
due to a shellular rotation compared to a uniform rotation are
found to be much larger for these intermediate rotators than are
third order (Ω3) effects (around 0.04 µHz for the region of g and
gp modes, and around 0.02 µHz for p modes, for a 100 km s−1

star model). This represents around 3.3% and 2% of effects
found for the core-reduced rotation models discussed above.

Likewise, note that such effects can be even larger
for different kinds of stars (Suárez et al., in preparation).
Observational evidence for this have already been obtained for
the early-B type stars HD 129929 and HD 29248 (Aerts et al.
2003; and Pamyatnykh et al. 2004, respectively).

For the models and rotation rates investigated here, quite
a number of modes are near degenerate, and a double-mode

interaction had to be computed for these modes. On the other
hand, we find that only a few modes require a triple-mode in-
teraction � = 0, 2, 4 or � = 1, 3, 5: one set at high frequency
n = 9, 10, 11 and two or three sets at low frequency (in the
fundamental mode vicinity). For these triple near-degenerate
modes, we encounter all possible cases of the two closest
modes among the three being either � = 0, � = 2 or � = 0, � = 4
or � = 2, 4; this is the same for � = 1, 3, 5 modes. The effect
of taking triple interaction into account instead of double in-
teraction can be quite different depending on the configuration
of the 3 modes (closeness of the frequencies). We find that the
effect can occasionally amount up to a few µHz.

In view of our different tests, we conclude that if one looks
for seismic signatures of shellular rotation that are smaller
than 0.5 µHz, we have to resort to the SGD98 and Karami et al.
(2005) formalism and include triple-mode interaction when-
ever it is necessary.

For higher rotation rates, perturbation techniques are no
longer useful, even if still valid, when the effects of rotation
are large enough that triple-mode interaction must be systemat-
ically taken into account for most modes; this situation indeed
would suggest that interaction that is higher than triple-mode
ought to be included. Then non-perturbative techniques, such
as the one developed by Lignières & Rieutord (2004) and Rees
et al. (2005, in prep.), will have to be used.

In the framework of the forthcoming space mission
COROT (Baglin & The COROT Team 1998), precisions
of 0.1 µHz on mode detection, and around 0.5 µHz on splitting
resolutions, are expected to be observed. With such accuracy,
the effects of shellular rotation are likely to detectable, pro-
vided numerical eigenfrequencies reach this level of precision.
Finally, we stress that it is possible to remove contaminations
of the high-order (second and higher) effects of rotation from
the rotational splitting in order to recover the true rotation pro-
file with the usual inversion techniques: this has been outlined
by (Dziembowski & Goupil 1998; Goupil et al. 2004) and will
be described in more detailed in a forthcoming paper. At low
rotation rates, this task will become even easier, since in this
case, the effect of differential rotation on oscillation frequen-
cies is dominated by structure terms in zeroth and first-order
frequency corrections.
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Appendix A: Oscillation frequencies
of a pseudo-rotating model

Considering an effective gravity, geff (Eq. (39)), and a rotation
profile, Ω(r) (Eq. (7)), the following dimensionless quantities
are defined as in SGD98:

y01 =
ξr

r
(A.1)

y02 =
1

geff r

(
φ′ + p′

ρ

)
(A.2)

y03 =
φ′
geff r

(A.3)

y04 =
1
geff

dφ′
dr
· (A.4)

Following Unno et al. (1989), we obtain a linearized eigenvalue
system:

x
dy01

dx
= λ − 3y01 +

Λ

Crσ
2
0

y02

x
dy02

dx
= (Crσ

2
0 − A∗)y01 + (A∗ + 1 − Uχ)y02 − A∗y03

x
dy03

dx
= (1 − Uχ)y03 + y04 (A.5)

x
dy04

dx
=

U
1 − σr

[
A∗y01 + Vg(y02 − y03)

]
+ Λy03 − Uχy04,

with x = r/R and R the stellar radius, where the following clas-
sical notations from Unno et al. (1989) are used

A∗ =
1
Γ

d ln p
d ln r

− d ln ρ
d ln r

(A.6)

V = −d ln p
d ln r

, Vg =
V
Γ1

(A.7)

U =
d ln Mr

d ln r
(A.8)

Λ = �(� + 1), (A.9)

and with Uχ defined as follows:

Uχ = U + χ. (A.10)

We also define, as in SGD98, the following variables

C =
( r
R

)3 M
Mr

, Cr =
C

1 − σr
(A.11)

σ2
0 =

ω0
2 R3

G M
; σr=

Ac

g
(A.12)

χ =
Ac

geff

(
U − 3 +

dΩ2/Ω̄2

dr

)
(A.13)

λ = Vg(y01 − y02 + y03), (A.14)

where Ac is the radial component of the centrifugal accelera-
tion defined in Eq. (41); M, mr respectively are the stellar mass
and the mass enclosed in the sphere of radius r. This system is
solved with the following boundary conditions:

y02 + y01
3

Vg
= 0, 3y01 + y04 = 0 (� = 0) (A.15)

y01 − y02
�

Crσ
2
0

= 0, y04 − �y03 = 0 (� � 0) (A.16)

at the center of the star and,

y01 = 1 (A.17)

y04 + (� + 1)y03 = 0 (A.18)

y01

⎛⎜⎜⎜⎜⎝1 +
Λ

VCσ2
0

− 4 + Cσ2
0

V

⎞⎟⎟⎟⎟⎠ − y02

⎛⎜⎜⎜⎜⎝1 − Λ

VCσ2
0

⎞⎟⎟⎟⎟⎠
+y03

(
1 +

� + 1
V

)
= 0 (A.19)

at the stellar surface. The resulting eigenvalues correspond to
the oscillation frequencies of a pseudo-rotating model (with
their associated eigenfunctions).

A.1. First-order perturbed eigenfuctions

Considering dimensionless variables equivalent to
Eqs. (A.1)−(A.4) with first-order perturbed quantities (ξ1,r, φ′1,
p′1), and the zeroth-order solutions obtained from Eq. (A.5),
first-order perturbed eigenfuctions can be calculated from the
following system:

x
dy1

dx
= λ1 − 3y1 +

Λ

Crσ
2
0

y2 (A.20)

+(y01 + z0)(1 + η0) − (η0 + σ1)Λz0

x
dy2

dx
= (Crσ

2
0 − A∗)y1 + (A∗ + 1 − Uχ)y2 − A∗y3

+(σ1 + η0)y01 − (1 + η0)z0

x
dy3

dx
= (1 − Uχ)y3 + y4 (A.21)

x
dy4

dx
=

U
1 − σr

[
A∗y1 + Vgy2 − Vgy3

]
+ Λy3 − Uχy4

where λ1 = Vg(y1 − y2 + y3) and

z0 =
y02

Cσ2
0

· (A.22)

The horizontal component of ξ1 can be written as follows:

z1 =
y2

Cσ2
0

+
1 + η0

Λ
y01 +

(
1 + η0

Λ
− σ1

)
z0, (A.23)

where σ1 = CL − J0 represents the first-order correction of the
corresponding eigenfrequency.

Appendix B: Xi and Yi expressions in Saio’s
notation

The terms Xi and Yi are constructed from ωI
2, ω

T
2 , ω

P
2 and, ωD

2
(see Sect. 2). It is convenient to split X1 and Y1 as follows:

X1 = XI
1 + XT

1

Y1 = YI
1 + YT

1 + YP
1 + Y0

1 .

These two terms include both, the toroidal component of the
first order perturbation of the displacement eigenfunction and
an effect of inertia. The different components of X1 are given
by the following analytic expressions:

XI
1 =

1
(8Λ − 6)I0

∫ R

0
b2

[
2(Λ − 1)y01

2 − Λy01z0

]
ρ0 r4 dr

(B.1)
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XT
1 =

2
I0

∫ R

0
(1 + η0)2

⎡⎢⎢⎢⎢⎢⎣(y01 − �z0)2 (� + 1)(� + 2)
4(� + 1)2 − 1

+(y01 + (� + 1)z0)2 �(� − 1)
4�2 − 1

⎤⎥⎥⎥⎥⎥⎦ ρ0 r4 dr. (B.2)

Respectively, the components of Y1 are expressed as:

YI
1 = Cl − 1

2

− 1
2I0

∫ R

0
η2

[
y01

2 + (Λ − 2)z2
0 − 4y01z0

]
ρ0 r4 dr (B.3)

YT
1 = −

2
I0

∫ R

0
(1 + η0)2

[
(y01 − �z0)2 � + 2

� + 1
1

4(� + 1)2 − 1

+(y01 + (� + 1)z0)2 � − 1
�

1
4�2 − 1

]
ρ0 r4 dr (B.4)

YP
1 =

2
I0

∫ R

0
(1 + η0)

[
z0y1 + z1y01 − y01y1

−(Λ − 1)z1z0

]
ρ0 r4 dr (B.5)

Y0
1 =

1
2

(σ1 − 1)2. (B.6)

Furthermore, X2 et Y2 contain the effect of deformation of the
star due to the non-spherical component of the centrifugal ac-
celeration. They are given by:

X2 =
Λ

4Λ − 3
Ic Y2 =

−3
4Λ − 3

Ic, (B.7)

with

Ic =
1

2I0

∫ R

0

⎧⎪⎪⎨⎪⎪⎩Cσ2
0

⎡⎢⎢⎢⎢⎢⎣ (
2y01

2 + 3z2
0

) (
r

du2

dr
+ (4 − U)u2

)

+2z2
0Λu2 + z0y01(Ψ1 + 6u2)

⎤⎥⎥⎥⎥⎥⎦
+y01

(
λ − y01(A∗ + Vg)

)
Uu2 − y01y03(Ψ1 + 2Λu2)

−y01y04

(
3r

du2

dr
+ u2(10 − 3U)

)
(B.8)

−2z0y04Λu2 −
[
y01

2
(
Cσ2

0 + 3 − U
)
+ z2

0Cσ2
0(Λ − 3)

+3z0y01 − 2y01y04 − 2z0y03(Λ − 3)
]
b2

−y01
2r

db2

dr

⎫⎪⎪⎬⎪⎪⎭ ρ0 r4 dr,

with u2, b2, η2 defined as in DG92:

u2 =
φ22

r2Ω̄2
+

1
3

(1 + η2)

b2 =
1
3

r
dη2

dr
(B.9)

η2 = (1 + η0)2 − 1.

B.1. High radial order p modes

For high radial order p modes, the horizontal component of the
fluid displacement is much smaller than the vertical one and
|y01| 	 |z0|. The modes are concentrated toward the surface
and y03, y04 ∼ 0, U ∼ 0, C ∼ 1 , λ ∼ Vgy01. Then Eq. (B.8)
becomes:

Ic ∼ 1
2I0

∫ R

0
y2

01

⎧⎪⎪⎨⎪⎪⎩Cσ2
0

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝2

(
r

du2

dr
+ 4u2

)⎤⎥⎥⎥⎥⎥⎦

− (Cσ2
0 + 3)b2 − r

db2

dr

⎫⎪⎪⎬⎪⎪⎭ ρ0 r4 dr. (B.10)

For large σ0, one further has

Ic ∼ σ2
0

1
I0

∫ R

0
y2

01

⎧⎪⎪⎨⎪⎪⎩
(
r

du2

dr
+ 4u2 − b2

2

⎫⎪⎪⎬⎪⎪⎭ ρ0 r4 dr. (B.11)

As

I0 ∼
∫ R

0
y2

01 ρ0 r4 dr,

then

Ic ∼ σ2
0〈S2〉, (B.12)

with

〈S2〉 =
〈(

r
du2

dr
+ 4u2 − b2

)〉
, (B.13)

where 〈〉 is a weighted average defined in Eq. (45). Hence
Ic (thereby X2, Y2) increases with σ2

0 i.e. with increasing fre-
quency.

B.2. Radial modes

For radial modes, � = 0, one has X2 = 0 Eq. (9) simplifies as:

ω2 =
Ω̄2

I0 ω0

∫ R

0
y01

2
(
b2 +

4
3

(1 + η0)
)
ρ0 r4 dr. (B.14)

Appendix C: First- and second-order corrections
for near-degenerate frequencies

The different terms which contribute to the first- and second-
order frequency corrections in presence of degeneracy are col-
lected in the µ j and µ jk given by Eq. (25). These contribu-
tions are:

ω1,ab = − 1
Ia
〈ξ0,a|K | ξ0,b〉 (C.1)

ωPT
2,ab = −

1
Ia

[
〈ξ0,a|K | ξP

1,b〉 + 〈ξ0,a|K | ξT
1,b〉

]

= ωP
2,ab + ω

T
2,ab (C.2)

ωD
2,ab =

1
2ω̄0Ia

〈ξ0,a| 1
ρ0

(
L2 − ρ2 ω̄

2
0

)
| ξ0,b〉 (C.3)

ωI
2,ab =

1
2ω̄0Ia

[
〈ξ0,a|m2Ω2 − 2 mΩ| ξ0,b〉

]
, (C.4)
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where Ia (Eq. (11)) is the normalization term for the mode a,

Ia = 〈ξ0,a|ξ0,a〉, (C.5)

where the scalar product definition is defined as in Eq. (12)
of DG92. ξP

1,k and ξT
1,k represent respectively the poloidal

and toroidal components of first-order eigenfunction correction
(see Eq. (26) in SGD98 for explicit expressions). The operator
K is defined as:

K = mΩ − iΩez × . (C.6)

Definitions of the operators L2, ρ2 can be found in DG92
and SGD98.

C.1. Detailed expression for ω1 ,ab

The use of the definitions of L2 and K on Eqs. (C.1)−(C.3)
yields the following expanded expressions:

ω1,ab =
mΩ̄
Ia
δ�a�b

∫ R

0
r4ρ0 dr(1 + η0)

{
−

(
y01,ay01,b + Λbz 0,az 0,b

)

+
(
y01,az 0,b + z 0,ay01,b + z 0,az 0,b

)}
, (C.7)

where δ�a�b is the Kronecker symbol.

C.2. Detailed expression for ωPT
2 ,ab

and ωI
2 ,ab

In the case of ωPT
2,ab, its components are expressed as:

ωP
2,ab = −2

m2Ω̄2

Iaω̄0
δ�a�b

∫ R

0
r4ρ0 dr (1 + η0)2

{
y01,ay1b (C.8)

+Λaz01,az1b

−(y01,az1b + z01,ay1b + z01,az1b)
}
, (C.9)

and

ωT
2,ab =

2Ω̄2

Iaω̄0

∫ R

0
r4ρ0 dr(1 + η0)2

{
δ�a,�b

(
τb+1τb+1Λ�b+1

+τ̂b−1τ̂b−1Λ�b−1

)
(C.10)

+δ�a�b+2

(
τb+1τ̂b+1Λb+1

)
+ δ�a�b−2

(
τb−1τ̂b−1Λb−1

)}
,

where τb+1 and τ̂b−1 are defined as follows:

τb+1 = − i
(�b + 1)

(
y01,b − �bz 0,b

)
γb+1 (C.11)

τ̂b−1 =
i
�b

(
y01,b − (�b + 1)z 0,b

)
γb . (C.12)

Finally, the inertial term of the correction is given by

ωI
2,ab = −m2 Ω̄

2

2Iaω̄0
δ�a�b

∫ R

0
r4ρ0 dr (1 + η0)2

×
{(
y01,ay01,b + Λb+1z 0,az 0,b

)

−2
(
y01,az 0,b + y01,bz 0,a + z 0,az 0,b

)}
. (C.13)

C.3. Detailed expression for ωD
2 ,ab

For the correction ωD
2,ab, the angular dependence can be factor-

ized as follows:

ωD
2,ab =

Ω̄2

ω̄0
Q2ab Zab, (C.14)

where Q2ab and Zab represent the angular and radial com-
ponents respectively. Selection rules then exist and are im-
posed by:

Q2ab =

∫
Ω

Y∗a Yb P2(cos θ) dΩ, (C.15)

where dΩ = sin θdθdϕ is the elementary solid angle and Yb

is the spherical harmonics Y�b ,mb . Using the second-order
Legendre polynomial:

P2(cos θ) =
3
2

cos2θ − 1
2
, (C.16)

we obtain

Q2ab =
3
2

[(
γ2

a+1 + γ
2
a −

1
3

)
δab

+γaγb+1δab+2 + γbγa+1δab−2

]
, (C.17)

with

γb =
√
Fb and F� = �2 − m2

4 �2 − 1
· (C.18)

On the other hand, the radial component Zab can be written
as SGD98:

Zab =
1

2Ia

∫ R

0
r2ρ0 dr

{
d1E1 + d2E2 + r2b2E3 + r2b3E4

}
,(C.19)

where

d1 = r2u2 d2 = r
dd1

dr
b3 =

1
3

r2 d2η2

dr2
, (C.20)

with b2 defined in B9. The non-degenerate expression is a par-
ticular case when a = b and it can be found in DG92.

The explicit expressions of E1, E2, E3 and E4 are given
below. For the sake of shortness, the following nomenclature is
used in DG92:

y ≡ y01 v ≡ y03 W ≡ y04, (C.21)

and the following short expressions have been defined:

q j = y j

(
Cσ2

0, j + 4 − U
)
− Λ jz0, j −W j (C.22)

λ j = Vg

(
y j − y02, j + v j

)
(C.23)

s j =
p Γ1λ j

rρ geff
· (C.24)

for j = a, b. We then have:

Ek = Ek,ab + Ek,ba k = 1, 4 (C.25)
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with

E1ab = −3
2

qayb +
1
2
yaybF1 − qaλb − 1

2
ybsaψ

+
(
Cσ2

0,a + 4
)
yaλb − λbWa

+

(
U − 3

2

)
Wayb − Λavayb

−Λaz 0,aWb + 3qaz 0,b +
1
2

z 0,az 0,bF3

−Λaz 0,ayb

(
3
2
−Cσ2

0,a + U − 4

)
− Λaz 0,aλb

−z 0,aybF2b + z 0,ay02,b(Λ+ab − 3)(U − 4)

+
1
2

(4 − U)
(
yaqb − saΛbz0b

)
, (C.26)

E2ab =
1
2

(
Cσ2

0,a − U
)
yayb +

1
2
yaqb + (U − 2)yasb

−ybWa +
1
2

(Λ+ab − 3) Cσ2
0,az 0,az 0,b + Λbz0bya

−(Λ+ab − 3)(z 0,by02,a) − 1
2

saΛbz0b, (C.27)

E3ab = −1
2

Cσ2
0,a

(
yayb + (Λ+ab − 3)z 0,az 0,b

)

−1
2
yasb(U + 6) − 3ybz 0,a − 1

2
(Λa − Λb)ybz 0,a

−(3 − Λ+ab)z 0,avb + yaWb

+
1
2

saλb

(
∂ lnΓ1

∂ ln r

)
p0

, (C.28)

E4 = −1
2

(yasb + ybsa), (C.29)

with

F1 = 6 + U(U − 2(A∗ + Vg) − 3) + (3 − U)Cσ2
0,a

F2a = (Λ+ab − 3)(U − 4) + Λ+ab(Cσ2
0,a + 4 − U)

F3 = (Λ+ab − 3)Cσ2
0,a(6 − U) + 6Λ+ab (C.30)

ψ = (1 − U)(4 − U) + 6 + U(U − 3)

Λ+ab =
1
2

(Λa + Λb)

Λ−ba =
1
2

(Λb − Λa) = −Λ−ab, (C.31)

where

Λ j = � j(� j + 1), (C.32)

with j representing the modes a and b.

C.3.1. High radial order p modes

Following the same approximations for modes concentrated to-
wards the surface as in Sect. B.1, and using the following ap-
proximations (from the definitions Eqs. (C.22)−(C.24))

q j ∼ y j

(
Cσ2

0, j + 4
)
, λ j ∼ Vgy j, s j ∼ y j j = a, b. (C.33)

Equation (C.19) becomes for large σ0:

Zab ∼ 1
Ia

∫ R

0
Cσ2

0

[
4u2 + r

du2

dr
− b2

2

]
yayb ρ0r4 dr, (C.34)

where we have used definitions given in Eqs. (B.9) and (C.20).
This expression is the same as the one in B11 when a = b.

Using the definition of weighted average given in Eq. (45)
with yayb instead of y2

01, Eq. (C.34) can be rewritten as :

Zab ∼ σ2
0 〈S2〉ab. (C.35)

Finally, ωD
2,ab (Eq. (C14)) for high radial order p modes can be

written as

ωD
2,ab ∼

Ω̄2

GM/R3
Q2ab ω̄0 〈S2〉ab. (C.36)


