3,515 research outputs found

    Collaborative Engagement Approaches For Delivering Sustainable Infrastructure Projects In The AEC Sector: A Review

    Get PDF
    The public sector has traditionally financed and operated infrastructure projects using resources from taxes and various levies (e.g. fuel taxes, road user charges). However, the rapid increase in human population growth coupled with extended globalisation complexities and associated social/political/economic challenges have placed new demands on the purveyors and operators of infrastructure projects. The importance of delivering quality infrastructure has been underlined by the United Nations declaration of the Millennium Development Goals; as has the provision of ‘adequate’ basic structures and facilities necessary for the well-being of urban populations in developing countries. Thus, in an effort to finance developing countries’ infrastructure needs, most countries have adopted some form of public-private collaboration strategy. This paper critically reviews these collaborative engagement approaches, identifies and highlights 10 critical themes that need to be appropriately captured and aligned to existing business models in order to successfully deliver sustainable infrastructure projects. Research findings show that infrastructure services can be delivered in many ways, and through various routes. For example, a purely public approach can cause problems such as slow and ineffective decision-making, inefficient organisational and institutional augmentation, and lack of competition and inefficiency (collectively known as government failure). On the other hand, adopting a purely private approach can cause problems such as inequalities in the distribution of infrastructure services (known as market failure). Thus, to overcome both government and market failures, a collaborative approach is advocated which incorporates the strengths of both of these polarised positions

    A General Precipitation-Limited L_X-T-R Relation Among Early-Type Galaxies

    Full text link
    The relation between X-ray luminosity (L_X) and ambient gas temperature (T) among massive galactic systems is an important cornerstone of both observational cosmology and galaxy-evolution modeling. In the most massive galaxy clusters, the relation is determined primarily by cosmological structure formation. In less massive systems, it primarily reflects the feedback response to radiative cooling of circumgalactic gas. Here we present a simple but powerful model for the L_X-T relation as a function of physical aperture R within which those measurements are made. The model is based on the precipitation framework for AGN feedback and assumes that the circumgalactic medium is precipitation-regulated at small radii and limited by cosmological structure formation at large radii. We compare this model with many different data sets and show that it successfully reproduces the slope and upper envelope of the L_X-T-R relation over the temperature range from ~0.2 keV through >10 keV. Our findings strongly suggest that the feedback mechanisms responsible for regulating star formation in individual massive galaxies have much in common with the precipitation-triggered feedback that appears to regulate galaxy-cluster cores.Comment: Submitted to ApJ, 9 pages, 3 figures (v2 fixes a few small typos

    Is it possible to increase the sustainability of arable and ruminant agriculture by reducing inputs?

    Get PDF
    Until recently, agricultural production was optimised almost exclusively for profit but now farming is under pressure to meet environmental targets. A method is presented and applied for optimising the sustainability of agricultural production systems in terms of both economics and the environment. Components of the agricultural production chain are analysed using environmental life-cycle assessment (LCA) and a financial value attributed to the resources consumed and burden imposed on the environment by agriculture, as well as to the products. The sum of the outputs is weighed against the inputs and the system considered sustainable if the value of the outputs exceeds those of the inputs. If this ratio is plotted against the sum of inputs for all levels of input, a diminishing returns curve should result and the optimum level of sustainability is located at the maximum of the curve. Data were taken from standard economic almanacs and from published LCA reports on the extent of consumption and environmental burdens resulting from farming in the UK. Land-use is valued using the concept of ecosystem services. Our analysis suggests that agricultural systems are sustainable at rates of production close to current levels practiced in the UK. Extensification of farming, which is thought to favour non-food ecosystem services, requires more land to produce the same amount of food. The loss of ecosystem services hitherto provided by natural land brought into production is greater than that which can be provided by land now under extensive farming. This loss of ecosystem service is large in comparison to the benefit of a reduction in emission of nutrients and pesticides. However, food production is essential, so the coupling of subsidies that represent a relatively large component of the economic output in EU farming, with measures to reduce pollution are well-aimed. Measures to ensure that as little extra land is brought into production as possible or that marginal land is allowed to revert to nature would seem to be equally well-aimed, even if this required more intensive use of productive areas. We conclude that current arable farming in the EU is sustainable with either realistic prices for products or some degree of subsidy and that productivity per unit area of land and greenhouse gas emission (subsuming primary energy consumption) are the most important pressures on the sustainability of farming

    Concentration of atomic hydrogen diffused into silicon in the temperature range 900–1300 °C

    Get PDF
    Boron-doped Czochralski silicon samples with [B]~1017 cm−3 have been heated at various temperatures in the range 800–1300 °C in an atmosphere of hydrogen and then quenched. The concentration of [H-B] pairs was measured by infrared localized vibrational mode spectroscopy. It was concluded that the solubility of atomic hydrogen is greater than [Hs] = 5.6 × 1018 exp( − 0.95 eV/kT)cm−3 at the temperatures investigated

    The use of plant and soil analyses to predict the potassium supplying capacity of the soil

    Get PDF

    Direct detection and quantification of microRNAs

    Get PDF
    The recent discovery of the potent regulatory nature of microRNAs (miRNAs), a relatively new class of approximately 22 nucleotide RNAs, has made them a primary focus in today’s biochemical and medical research. The relationship between miRNA expression patterns and the onset of cancer, as well as other diseases, has glimpsed the potential of miRNAs as disease biomarkers or drug targets, making them a primary research focus. Their promising future in medicine is hinged upon improving our scientific understanding of their intricate regulatory mechanisms. In the realm of analytical chemistry, the main challenge associated with miRNA is its detection. Their extremely small size and low cellular concentration poses many challenges for achieving reliable results. Current reviews in this area have focused on adaptations to microarray, PCR, and Northern blotting procedures to make them suitable for miRNA detection. While these are extremely powerful methods and accepted as the current standards, they are typically very laborious, semi-quantitative, and often require expensive imaging equipment and/or radioactive/toxic labels. This review aims to highlight emerging techniques in miRNA detection and quantification that exhibit superior flexibility and adaptability as well as matched or increased sensitivity in comparison to the current standards. Specifically, this review will cover colorimetric, fluorescence, bioluminescence, enzyme, and electrochemical based methods, which drastically reduce procedural complexity and overall expense of operation thereby increasing the accessibility of this field of research. The methods are presented and discussed as to their improvements over current standard methods as well as their potential complications preventing acceptance as standard procedures. These new methods have addressed the many of the problems associated with miRNA detection through the employment of enzyme-based signal amplification, enhanced hybridization conditions using PNA capture probes, highly sensitive and flexible forms of spectroscopy, and extremely responsive electrocatalytic nanosystems, among other approaches
    • …
    corecore