1,098 research outputs found
Beneficial effects of spices in food preservation and safety
Spices have been used since ancient times. Although they have been employed mainly as flavoring and coloring agents, their role in food safety and preservation have also been studied in vitro and in vivo. Spices have exhibited numerous health benefits in preventing and treating a wide variety of diseases such as cancer, aging, metabolic, neurological, cardiovascular, and inflammatory diseases. The present review aims to provide a comprehensive summary of the most relevant and recent findings on spices and their active compounds in terms of targets and mode of action; in particular, their potential use in food preservation and enhancement of shelf life as a natural bioingredient
Monitoring Chronic Myeloid Leukemia: How Molecular Tools May Drive Therapeutic Approaches
More than 15 years ago, imatinib entered into the clinical practice as a “magic bullet”; from that point on, the prognosis of patients affected by chronic myeloid leukemia (CML) became comparable to that of aged-matched healthy subjects. The aims of treatment with tyrosine kinase inhibitors (TKIs) are for complete hematological response after 3 months of treatment, complete cytogenetic response after 6 months, and a reduction of the molecular disease of at least 3 logs after 12 months. Patients who do not reach their goal can switch to another TKI. Thus, the molecular monitoring of response is the main consideration of management of CML patients. Moreover, cases in deep and persistent molecular response can tempt the physician to interrupt treatment, and this “dream” is possible due to the quantitative PCR. After great international effort, today the BCR-ABL1 expression obtained in each laboratory is standardized and expressed as “international scale.” This aim has been reached after the establishment of the EUTOS program (in Europe) and the LabNet network (in Italy), the platforms where biologists meet clinicians. In the field of quantitative PCR, the digital PCR is now a new and promising, sensitive and accurate tool. Some authors reported that digital PCR is able to better classify patients in precise “molecular classes,” which could lead to a better identification of those cases that will benefit from the interruption of therapy. In addition, digital PCR can be used to identify a point mutation in the ABL1 domain, mutations that are often responsible for the TKI resistance. In the field of resistance, a prominent role is played by the NGS that enables identification of any mutation in ABL1 domain, even at sub-clonal levels. This manuscript reviews how the molecular tools can lead the management of CML patients, focusing on the more recent technical advances
Efficacy and Safety of Direct-Acting Oral Anticoagulants Use in Acute Portal Vein Thrombosis Unrelated to Cirrhosis
In acute portal vein thrombosis (APVT) unrelated to cirrhosis, anticoagulant therapy is classically started with low molecular weight heparin or vitamin K antagonists. New direct-acting oral anticoagulants (DOACs) are used in the treatment of venous thrombosis outside the splanchnic vascular bed, but not in the latter. We report a young female with APVT occurring in a non-cirrhotic liver linked to heterozygosity of factor V-Leiden and prothrombin G20210A gene mutations. Rivaroxaban was started, with total recanalization of the left and partial recanalization of the right portal vein branches, without complications. New DOACs do not need daily subcutaneous injections nor routinely blood coagulation control tests, making its use attractive, eventually increasing patient's compliance. If proved to be safe and effective in the future studies, its use may be extended to PVT treatment. This case shows that rivaroxaban was safe, not only prevented the extension of thrombosis in the portal tract, but also resolved PVT, at least partially.info:eu-repo/semantics/publishedVersio
Effects of exciton deconfinement on the transient photoluminescence from thermally activated delayed fluorescence host-guest systems
For thermally activated delayed fluorescence (TADF) host-guest systems used in organic light-emitting diodes, understanding of the transient photoluminescence (PL) measurements is crucial for accurate determination of the photophysical rates of the emitter. Here, we study how the PL is affected by triplet-exciton deconfinement from the guest to the host molecules. This deconfinement can complicate the analysis of the PL decay and potentially lead to a loss of efficiency. From an analytical model, we find that the transient PL intensity remains bi-exponential in the presence of exciton deconfinement for the case of fast triplet diffusion, albeit with a longer decay time of the delayed component. Deconfinement might, therefore, not always be recognizable from a single transient PL measurement. The role of deconfinement depends on the energetic disorder, the guest concentration, and the energy difference Δ E T between triplet-exciton energies on the host and guest molecules and is effectively suppressed for Δ E T > - > 0.2 eV. We find from analytical modeling and kinetic Monte Carlo simulations that the decay can become non-bi-exponential and even show a distinct third decay step. The shape of the decay curves depends on the characteristic times for guest-host transfer and host diffusion, relative to the prompt and delayed decay times of the TADF emitter. A comparison with available experimental data is included, finding qualitative agreement with dedicated deconfinement studies and indicating the influence of other processes for the often observed power-law decay at long time scales. </p
Lactobacillus paracasei A13 and high-pressure homogenization stress response
Sub-lethal high-pressure homogenization treatments applied to Lactobacillus paracasei A13 demonstrated to be a useful strategy to enhance technological and functional properties without detrimental effects on the viability of this strain. Modification of membrane fatty acid composition is reported to be the main regulatory mechanisms adopted by probiotic lactobacilli to counteract high-pressure stress. This work is aimed to clarify and understand the relationship between the modification of membrane fatty acid composition and the expression of genes involved in fatty acid biosynthesis in Lactobacillus paracasei A13, before and after the application of different sub-lethal hyperbaric treatments. Our results showed that Lactobacillus paracasei A13 activated a series of reactions aimed to control and stabilize membrane fluidity in response to high-pressure homogenization treatments. In fact, the production of cyclic fatty acids was counterbalanced by the unsaturation and elongation of fatty acids. The gene expression data indicate an up-regulation of the genes accA, accC, fabD, fabH and fabZ after high-pressure homogenization treatment at 150 and 200 MPa, and of fabK and fabZ after a treatment at 200 MPa suggesting this regulation of the genes involved in fatty acids biosynthesis as an immediate response mechanism adopted by Lactobacillus paracasei A13 to high-pressure homogenization treatments to balance the membrane fluidity. Although further studies should be performed to clarify the modulation of phospholipids and glycoproteins biosynthesis since they play a crucial role in the functional properties of the probiotic strains, this study represents an important step towards understanding the response mechanisms of Lactobacillus paracasei A13 to sub-lethal high-pressure homogenization treatments
Proximity effect model for x-ray transition edge sensors
Transition Edge Sensors are ultra-sensitive superconducting detectors with
applications in many areas of research, including astrophysics. The device
consists of a superconducting thin film, often with additional normal metal
features, held close to its transition temperature and connected to two
superconducting leads of a higher transition temperature. There is currently no
way to reliably assess the performance of a particular device geometry or
material composition without making and testing the device. We have developed a
proximity effect model based on the Usadel equations to predict the effects of
device geometry and material composition on sensor performance. The model is
successful in reproducing I-V curves for two devices currently under study. We
use the model to suggest the optimal size and geometry for TESs, considering
how small the devices can be made before their performance is compromised. In
the future, device modelling prior to manufacture will reduce the need for
time-consuming and expensive testing.This work was partly supported by ESA CTP contract with No. 4000114932/15/NL/BW and EU H2020 AHEAD program
The Garisenda Tower in Bologna: Effects of degradation of selenite basement on its static behaviour
The Garisenda tower in Bologna, a 48 m tall structure with a square base of 7.45 meters per side, is characterized by an overall out of plumb of 3.32m in the South-East direction. Its construction dates back to the XI century and, due to its impressive leaning, in 1350–1353 the original height of 60m was reduced to the 48m of the present day (Cavani 1903; Giordano 2000). The tower can be seen as partitioned in a lower portion, with walls composed by two external leaves of selenite stones filled with rubble conglomerate, and an upper portion where the external leaves are made of masonry bricks. Recent investigations have proved that selenite blocks of the basement have been altered as a result of (a) exposition to high temperatures during important fires, that took place at the end of XIV and XVII centuries, and possibly because of the presence of forges (that were demolished at the end of the XIX centuries) and (b) high level of humidity in the inner lower part of the tower. This process has produced a gradual local disintegration of the selenite stones, leading in some case to a reduction of the original 50 to 60 cm thickness by an amount of about 20 cm. The contribution submitted to this conference is aimed at clarifying this important aspect, linked to the ageing and damage of structural stones and the related consequences in terms of stress distribution and concentrations that could induce fracture propagation and sudden collapse of the tower basement
- …