166 research outputs found

    Development of microsatellite markers and detection of genetic variation between Goniozus wasp populations

    Get PDF
    Molecular genetic markers reveal differences between genotypes according to the presence of alleles (the same or different) at target loci. Microsatellite markers are especially useful codominant markers that have been used in a wide range of studies to elucidate the population structure and dynamics of a range of organisms, including agriculturally beneficial insects such as parasitic wasps (parasitoids). In the present study, twelve primer pairs were designed for the south Asian , Goniozus nephantidis (Muesebeck) (Hymenoptera: Bethylidae), and 24 for its New World congener, Goniozus legneri Gordh, parasitoids of the larvae of the lepidopteran coconut pest Opisina arenosella Walker (Lepidoptera: Crytophasidae) and other lepidopteran pests, respectively, in order to investigate polymorphism within and between populations. The wasps fingerprinted were a total of 85 G. nephantidis and G. legneri, including individuals belonging to three putatively different strains of G. legneri. Annealing gradient tests (50–65°C) were conducted to study the quality of the PCR amplification across an annealing temperature gradient using a mixed genotype DNA template from each species separately. Seven primer pairs, which amplified clear products of approximately the expected size of G. nephantidis and 18 of G. legneri, were then selected for capillary analysis for fragment size determination on a Beckmann CEQ 8000. Neither G. nephantidis nor G. legneri were polymorphic within populations. However, there were six primer pairs that did show polymorphism between G. legneri populations that originated from different geographical areas within South America (Uruguay and Chile). Furthermore, one primer pair revealed diversity between the two strains collected within Chile. One of the markers was subsequently used to provide unbiased assessment of primary sex ratio in G. legneri

    Elevated [11C]-D-Deprenyl Uptake in Chronic Whiplash Associated Disorder Suggests Persistent Musculoskeletal Inflammation

    Get PDF
    There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer 11C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II) and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that 11C-D-deprenyl is a promising tracer for these purposes

    Characterization and Generation of Male Courtship Song in Cotesia congregata (Hymenoptera: Braconidae)

    Get PDF
    Background Male parasitic wasps attract females with a courtship song produced by rapid wing fanning. Songs have been described for several parasitic wasp species; however, beyond association with wing fanning, the mechanism of sound generation has not been examined. We characterized the male courtship song of Cotesia congregata (Hymenoptera: Braconidae) and investigated the biomechanics of sound production. Methods and Principal Findings Courtship songs were recorded using high-speed videography (2,000 fps) and audio recordings. The song consists of a long duration amplitude-modulated “buzz” followed by a series of pulsatile higher amplitude “boings,” each decaying into a terminal buzz followed by a short inter-boing pause while wings are stationary. Boings have higher amplitude and lower frequency than buzz components. The lower frequency of the boing sound is due to greater wing displacement. The power spectrum is a harmonic series dominated by wing repetition rate ~220 Hz, but the sound waveform indicates a higher frequency resonance ~5 kHz. Sound is not generated by the wings contacting each other, the substrate, or the abdomen. The abdomen is elevated during the first several wing cycles of the boing, but its position is unrelated to sound amplitude. Unlike most sounds generated by volume velocity, the boing is generated at the termination of the wing down stroke when displacement is maximal and wing velocity is zero. Calculation indicates a low Reynolds number of ~1000. Conclusions and Significance Acoustic pressure is proportional to velocity for typical sound sources. Our finding that the boing sound was generated at maximal wing displacement coincident with cessation of wing motion indicates that it is caused by acceleration of the wing tips, consistent with a dipole source. The low Reynolds number requires a high wing flap rate for flight and predisposes wings of small insects for sound production

    A Molecular Phylogeny of the Chalcidoidea (Hymenoptera)

    Get PDF
    Chalcidoidea (Hymenoptera) are extremely diverse with more than 23,000 species described and over 500,000 species estimated to exist. This is the first comprehensive phylogenetic analysis of the superfamily based on a molecular analysis of 18S and 28S ribosomal gene regions for 19 families, 72 subfamilies, 343 genera and 649 species. The 56 outgroups are comprised of Ceraphronoidea and most proctotrupomorph families, including Mymarommatidae. Data alignment and the impact of ambiguous regions are explored using a secondary structure analysis and automated (MAFFT) alignments of the core and pairing regions and regions of ambiguous alignment. Both likelihood and parsimony approaches are used to analyze the data. Overall there is no impact of alignment method, and few but substantial differences between likelihood and parsimony approaches. Monophyly of Chalcidoidea and a sister group relationship between Mymaridae and the remaining Chalcidoidea is strongly supported in all analyses. Either Mymarommatoidea or Diaprioidea are the sister group of Chalcidoidea depending on the analysis. Likelihood analyses place Rotoitidae as the sister group of the remaining Chalcidoidea after Mymaridae, whereas parsimony nests them within Chalcidoidea. Some traditional family groups are supported as monophyletic (Agaonidae, Eucharitidae, Encyrtidae, Eulophidae, Leucospidae, Mymaridae, Ormyridae, Signiphoridae, Tanaostigmatidae and Trichogrammatidae). Several other families are paraphyletic (Perilampidae) or polyphyletic (Aphelinidae, Chalcididae, Eupelmidae, Eurytomidae, Pteromalidae, Tetracampidae and Torymidae). Evolutionary scenarios discussed for Chalcidoidea include the evolution of phytophagy, egg parasitism, sternorrhynchan parasitism, hypermetamorphic development and heteronomy

    Phylogeny and evolution of life-history strategies in the Sycophaginae non-pollinating fig wasps (Hymenoptera, Chalcidoidea)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-pollinating Sycophaginae (Hymenoptera, Chalcidoidea) form small communities within <it>Urostigma </it>and <it>Sycomorus </it>fig trees. The species show differences in galling habits and exhibit apterous, winged or dimorphic males. The large gall inducers oviposit early in syconium development and lay few eggs; the small gall inducers lay more eggs soon after pollination; the ostiolar gall-inducers enter the syconium to oviposit and the cleptoparasites oviposit in galls induced by other fig wasps. The systematics of the group remains unclear and only one phylogeny based on limited sampling has been published to date. Here we present an expanded phylogeny for sycophagine fig wasps including about 1.5 times the number of described species. We sequenced mitochondrial and nuclear markers (4.2 kb) on 73 species and 145 individuals and conducted maximum likelihood and Bayesian phylogenetic analyses. We then used this phylogeny to reconstruct the evolution of Sycophaginae life-history strategies and test if the presence of winged males and small brood size may be correlated.</p> <p>Results</p> <p>The resulting trees are well resolved and strongly supported. With the exception of <it>Apocrytophagus</it>, which is paraphyletic with respect to <it>Sycophaga</it>, all genera are monophyletic. The Sycophaginae are divided into three clades: (i) <it>Eukoebelea</it>; (ii) <it>Pseudidarnes</it>, <it>Anidarnes </it>and <it>Conidarnes </it>and (iii) <it>Apocryptophagus</it>, <it>Sycophaga </it>and <it>Idarnes</it>. The ancestral states for galling habits and male morphology remain ambiguous and our reconstructions show that the two traits are evolutionary labile.</p> <p>Conclusions</p> <p>The three main clades could be considered as tribes and we list some morphological characters that define them. The same biologies re-evolved several times independently, which make Sycophaginae an interesting model to test predictions on what factors will canalize the evolution of a particular biology. The ostiolar gall-inducers are the only monophyletic group. In 15 Myr, they evolved several morphological adaptations to enter the syconia that make them strongly divergent from their sister taxa. Sycophaginae appears to be another example where sexual selection on male mating opportunities favored winged males in species with small broods and wingless males in species with large broods. However, some species are exceptional in that they lay few eggs but exhibit apterous males, which we hypothesize could be due to other selective pressures selecting against the re-appearance of winged morphs.</p
    corecore